Перенасыщение кислородом мозга. Что будет если человек будет дышать чистым кислородом? Как долго он так протянет

Недавно страну облетела новость: госкорпорация «Роснано» инвестирует 710 млн рублей в производство инновационных лекарственных препаратов против возрастных заболеваний. Речь идет о так называемых «ионах Скулачева» – фундаментальной разработке отечественных ученых. Она поможет справиться со старением клеток, которое вызывает кислород.

«Как же так? – удивитесь вы. – Без кислорода невозможно жить, а вы утверждаете, что он ускоряет старение!» На самом деле противоречия тут нет. Двигатель старения – активные формы кислорода, которые образуются уже внутри наших клеток.

Источник энергии

Немногие знают, что чистый кислород опасен. Его в небольших дозах применяют в медицине, но если дышать им долго, можно отравиться. Лабораторные мыши и хомячки, к примеру, живут в нем всего несколько дней. В воздухе же, которым мы дышим, кислорода чуть больше 20%.

Почему же столько живых существ, в том числе человек, нуждаются в небольшом количестве этого опасного газа? Дело в том, что О2 – мощнейший окислитель, перед ним не может устоять практически ни одно вещество. А всем нам нужна энергия, чтобы жить. Так вот, получать ее мы (а также все животные, грибы и даже большинство бактерий) можем, именно окисляя те или иные питательные вещества. Буквально сжигая их, как дрова в каминной топке.

Происходит этот процесс в каждой клетке нашего тела, где для него имеются специальные «энергетические станции» – митохондрии. Именно туда в конечном итоге попадает все, что мы съели (разумеется, переваренное и разложенное до простейших молекул). И именно внутри митохондрий кислород делает единственное, что он умеет, – окисляет.

Такой способ получения энергии (его называют аэробным) весьма выгоден. Например, некоторые живые существа умеют получать энергию и без окисления кислородом. Только вот благодаря этому газу из одной и той же молекулы получается в несколько раз больше энергии, чем без него!

Скрытый подвох

Из 140 литров кислорода, которые мы вдыхаем за день из воздуха, почти все уходит на получение энергии. Почти – но не все. Примерно 1% тратится на производство… яда. Дело в том, что во время полезной деятельности кислорода образуются и опасные вещества, так называемые «активные формы кислорода». Это – свободные радикалы и перекись водорода.

Зачем вообще природе вздумалось производить этот яд? Некоторое время назад ученые нашли этому объяснение. Свободные радикалы и перекись водорода при помощи особого белка-фермента образуются на внешней поверхности клеток, с их помощью наш организм уничтожает бактерии, попавшие в кровь. Очень разумно, если учесть, что радикал гидроксида по своей ядовитости соперничает с хлоркой.

Однако не весь яд оказывается за пределами клеток. Он образуется и в тех самых «энергетических станциях», митохондриях. В них же имеется своя собственная ДНК, которую и повреждают активные формы кислорода. Дальше все понятно и так: работа энергетических станций разлаживается, ДНК повреждена, начинается старение…

Зыбкий баланс

К счастью, природа позаботилась о том, чтобы нейтрализовать активные формы кислорода. За миллиарды лет кислородной жизни наши клетки в общем-то научились держать О2 в узде. Во-первых, его не должно быть слишком много или слишком мало – и то и другое провоцирует образование яда. Поэтому митохондрии умеют «выгонять» лишний кислород, а также «дышать» так, чтобы он не мог образовать те самые свободные радикалы. Более того, в арсенале нашего организма есть вещества, которые неплохо борются со свободными радикалами. Например, ферменты-антиоксиданты, которые превращают их в более безобидную перекись водорода и просто кислород. Другие ферменты тут же берут в оборот перекись водорода, превращая ее в воду.

Вся эта многоступенчатая защита неплохо работает, но со временем начинает давать сбои. Сначала ученые думали, что с годами ферменты-защитники от активных форм кислорода слабеют. Оказалось, нет, они по-прежнему бодры и активны, однако по законам физики какие-то свободные радикалы все равно минуют многоступенчатую защиту и начинают разрушать ДНК.

Можно ли поддержать свою природную защиту от ядовитых радикалов? Да, можно. Ведь чем дольше живут в среднем те или иные животные, тем лучше отточена их защита. Чем интенсивнее обмен веществ у того или иного вида, тем эффективнее его представители справляются со свободными радикалами. Соответственно, первая помощь себе изнутри – вести активный образ жизни, не позволяя обмену веществ замедлиться с возрастом.

Тренируем молодость

Есть еще несколько обстоятельств, которые помогают нашим клеткам справляться с ядовитыми производными кислорода. Например, поездка в горы (1500 м и выше над уровнем моря). Чем выше, тем меньше в воздухе кислорода, и жители равнины, попав в горы, начинают чаще дышать, им трудно двигаться – организм пытается компенсировать нехватку кислорода. Через две недели жизни в горах наш организм начинает приспосабливаться. Повышается уровень гемоглобина (белок крови, который разносит кислород из легких во все ткани), а клетки учатся использовать О2 экономичнее. Возможно, говорят ученые, это одна из причин того, что среди горцев Гималаев, Памира, Тибета, Кавказа много долгожителей. И даже если вы попадете в горы только на время отпуска раз в год, вы получите те же самые выгодные изменения, пусть всего на месяц.

Итак, можно научиться вдыхать много кислорода или, наоборот, мало, существует масса дыхательных техник обоих направлений. Однако по большому счету организм все равно будет поддерживать количество кислорода, попадающего в клетку, на некоем среднем, оптимальном для себя и своей нагрузки уровне. И тот самый 1% будет уходить на производство яда.

Поэтому ученые считают, что действеннее будет зайти с другой стороны. Оставить в покое количество О2 и усилить клеточную защиту от его активных форм. Нужны антиоксиданты, причем такие, которые смогут проникать внутрь митохондрий и обезвреживать яд именно там. Как раз такие и хочет выпускать «Роснано». Возможно, уже через несколько лет подобные анти­оксиданты можно будет принимать, как нынешние витамины А, Е и С.

Молодильные капли

Перечень современных антиоксидантов давно уже не ограничивается перечисленными витаминами А, Е и С. Среди новейших открытий – ионы-антиоксиданты SkQ, разработанные группой ученых под руководством действительного члена Академии наук, почетного президента Российского общества биохимиков и молекулярных биологов, директора Института физико-химической биологии им. А. Н. Белозерского МГУ, лауреата Государственной премии СССР, основателя и декана факультета биоинженерии и биоинформатики МГУ Владимира Скулачева.

Еще в 70-е годы ХХ века он блестяще доказал теорию о том, что митохондрии являются «электростанциями» клеток. Для этого были изобретены положительно заряженные частицы («ионы Скулачева»), которые могут проникать внутрь митохондрий. Теперь академик Скулачев и его ученики «прицепили» к этим ионам вещество-антиоксидант, которое способно «разобраться» с ядовитыми соединениями кислорода.

На первом этапе это будут не «таблетки от старости», а препараты для лечения конкретных болезней. Первыми в очереди стоят глазные капли для лечения некоторых возрастных проблем со зрением. Подобные препараты уже дали совершенно фантастические результаты при испытании на животных. В зависимости от вида, новые антиоксиданты могут снижать раннюю смертность, увеличивать среднюю продолжительность жизни и продлевать максимальный возраст – заманчивые перспективы!

Дыхание рефлекторно учащается, когда организм расходует много энергии и нуждается в повышенном насыщении клеток кислородом. Это случается во время бега, при погружении на глубину, во время родов, а также во время полового и нервного возбуждения. Именно в такие моменты и возникает опасный синдром гипервентиляции.

Синдром гипервентиляции: признаки

К основным признакам синдрома гипервентиляции относят:

  • чувство тревоги, беспокойства, возбуждения;
  • частое дыхание, зевота;
  • ощущение легкого удушья, нехватки воздуха;
  • повышенный пульс;
  • нарушение координации, головокружение;
  • покалывание в конечностях, их онемение;
  • боль в груди, ее уплотнение или, наоборот, мягкость.

Возможны и другие симптомы гипоксии, вызванной синдромом гипервентиляции:

  • головная боль;
  • повышенное газообразование, раздувание, отрыгивание;
  • судорожные движения;
  • повышенное потоотделение;
  • нарушение четкости зрения;
  • потеря сознания;
  • кома.

Эти симптомы могут быть вызваны и другими причинами, но если нарушено дыхание, то это признаки разных степеней гипоксии головного мозга. Для восстановления нормального кровоснабжения мозга необходимо нормализовать дыхание и дождаться исчезновения всех признаков гипоксии.

Контроль гипервентиляции

В дайвинге есть понятие контролируемой гипервентиляции - когда дайвер искусственно вызывает у себя легкую гипервентиляцию, не доводя ее до гипоксии. Перед погружением он делает несколько глубоких вдохов и выдохов, ныряя на вдохе. Это делается для того, чтобы повысить запас кислорода в тканях и, соответственно, увеличить продолжительность погружения и снизить опасность появления синдрома гипервентиляции.

Дыхание позволяет регулировать темп бега. Оптимальным для любительских занятий считается бег без кислородного голодания. Для этого тренеры рекомендуют делать один короткий глубокий вдох носом (на один шаг) и четыре длинных выдоха ртом.

Проверить наличие гипоксии и риск возникновения синдрома гипервентиляции просто: если при беге удобно разговаривать, значит гипервентиляции нет. Если говорить трудно, то это уже высокий темп. Если же дыхание частое и прерывистое, то сил хватит не больше чем на пять минут бега. Спринтеры бегут практически на задержке дыхания, предварительно создав кислородный запас. Это объединяет спринтерский бег с дайвингом.

Роды - еще одна ситуация. опасная с точки зрения возникновения синдрома гипервентиляции. На определенных этапах родов важно частое и прерывистое (собачье) дыхание. На курсах подготовки к родам будущих мам учат такому дыханию. Оно пригодится при схватках, чтобы регулировать боль и управлять кислородным запасом. Для создания такого запаса в начале схватки, как перед погружением или спринтерской дистанцией, делаются глубокий вдох и длинный выдох. Затем уже следуют 30-60 секунд частого дыхания. И в конце схватки снова глубокий вдох и глубокий выдох. Причем соотношение вдох-выдох должно быть 1:2. Во время потуг акушеры сами руководят дыханием роженицы - слишком оно важно для появляющегося на свет человека.

Синдром гипервентиляции: почему избыток кислорода вреден

При увеличении уровня кислорода в крови происходит уменьшение углекислоты, которая составляет основу угарного газа. Однако когда содержание кислорода переходит критическую черту, количество углекислого газа резко увеличивается.

Углекислый газ - это конечный продукт обменных процессов, протекающих в организме. В норме уровень углекислоты, постоянно присутствующей в артериальной крови, составляет 41 мм рт. ст., а в венозной - 43-45 мм рт. ст. В воздухе, который содержится в альвеолах легких, также должен быть углекислый газ - его давление там около 40 мм рт. ст. Если бы в легких совсем не было углекислого газа (что может произойти при синдроме гипервентиляции), мы бы вообще не смогли дышать, потому что он является физиологическим раздражителем дыхательного центра, обеспечивая рефлекторность дыхания. Повысилось количество углекислоты в альвеолах - сигнал в мозг - вдох. Насытилась альвеолярная кровь кислородом - сигнал в мозг - выдох. Если кислород поступает в избыточным количестве, парциальное давление углекислого газа в альвеолярном воздухе падает до 12-16 мм рт. ст.

Вторая функция углекислого газа - регуляция тонуса кровеносных сосудов. Из легких в дыхательный центр передается сигнал о критическом снижении уровня углекислоты при синдроме гипервентиляции, рефлекторный ответ - резкое сужение сосудов головного мозга. По суженным сосудам в мозг поступает гораздо меньше кислорода - возникает гипоксия, или кислородное голодание. Все эти химические реакции происходят на фоне активного насыщения других тканей кислородом. Поскольку молекулы кислорода не могут находиться в нашем организме в свободном виде, их связывает гемоглобин. В описываемой ситуации молекулы гемоглобина более прочно связываются с молекулами кислорода и начинается «закисление» тканей, поскольку красным кровяным тельцам тяжелее передавать тяжелые связанные элементы на периферию.

В результате гипоксии начинается торможение коры головного мозга, многие клетки которой безвозвратно гибнут. При этом подкорка активизируется - у человека появляются галлюцинации. Если гипоксия при синдроме гипервентиляции длится долго, возможно наступление инсульта, комы и смерти.

Что будет если человек будет дышать чистым кислородом? Как долго он так протянет?

  1. недолго
  2. а вы на стройку пойдите, спросите у сварщиков кислородный балон, откройте его (желательно промасленными руковичками) и поглядите сколько вы сможете им дышать …

    (сарказм) не вздумай так делать (что бы меня не посадили) кислород при соединении с любым углеводом вызовет такую реакцию окисления (большой огонк) ,что потом по стенам соберать будут …

  3. Скажете а сколько можно дышать чистым кислородом при давлении 0,3? Заранее спасибо!
  4. В атмосфере примерно 17% кислорода. Даже в больнице пациентам дают 22%, а не чистый кислород. Кислород — это одно из самы агессивны химических веществ (окислитель) . Атомы кислорода даже меж собой реагируют. Поэтому О2 а не просто О. О1 — это воабще яд! При повышении давления, увиличивается и химическая активность кислорода.. .
    Если дышать чистым (100%) кислородом (О2) и на долго, то:
    1) Сильный ожог дыхательных путей.
    2) может привести к сильным отравлениям всего организма.
  5. Жизнедеятельность человеческого организма и внутренние процессы, ее обуславливающие, тонко рассчитаны на потребление кислорода в определенном количестве. Избыток кислорода, как и его недостаток, вреден для организма. Превышение парциального давления О2 величины в 1,8 атм. при длительной экспозиции делает газ токсичным для легких и головного мозга. Механизм токсичного воздействия О2 заключается в нарушении биохимического баланса тканевых клеток, в особенности, нервных клеток мозга.
    Длительное вдыхание кислорода вызывает кислородное отравление. Сколько это по времени? Для нормального атмосферного давления — 18-24 часа. Гораздо хуже дело обстоит для тех, кто погружается под воду. Чем выше давление, тем меньше можно дышать чистым кислородом. Погружение на глубину более 10 метров на чистом кислороде категорически запрещено!! !

    NOAA Пределы безопасного воздействия кислорода
    РО2 (бар/ata) Время
    0.6 720 мин
    0.7 570 мин
    0.8 450 мин
    0.9 360 мин
    1.0 300 мин (при атмосферном давлении)
    1.1 240 мин
    1.2 210 мин
    1.3 180 мин
    1.4 150 мин
    1.5 120 мин
    1.6 45 мин

    Симптомы кислородного отравления: нарушения зрения (туннельное зрение, неспособность сфокусироваться) , нарушение слуха (звон в ушах, появление посторонних звуков) , тошнота, судорожные сокращения (особенно мышц лица) , повышенную чувствительность к внешним раздражителям и головокружение. Наиболее тревожным симптомом является появление конвульсий или гипероксических судорог. Такие судороги представляют собой потерю сознания с возникновением повторяющихся сильных сокращений практически всех мышц тела в течение минуты.

  6. В полетах на Луну астронавты дышали чистым кислородом при сильно пониженном давлении без каких-то вредных последствий. Позднее от такого отказались из-за опасности пожаров.
  7. зубы быстро испортятся…
  8. В общем так: в мозге протекают окислительно-восстановительные реакции — так рождаются мысли. Кислород — разгоняет, СО2 — тормозит. При избытке О2 нет торможения: попробуйте просто часто-часто подышать — голова закружиться. Примерно так выглядит «кислородное отравление».
    Таблицу тут привели, время сколько чел протянет на чистом О2 — зависит от давления.
  9. Да ничего не будет, во всяком случае для нас. А для Вас закончится кислородным отравлением, комой ну и….
  10. скорее всего задохнется, такое ощущение будет — что он вдохнуть не может, надышаться.