Сферы применения ультразвука. Что такое ультразвук и как он используется в промышленности

Сферы применения ультразвука. Что такое ультразвук и как он используется в промышленности

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоёмкости газов, упругие постоянные твёрдых тел.

Энциклопедичный YouTube

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне от нескольких десятков кГц до единиц МГц. Высокочастотные колебания обычно создают с помощью пьезокерамических преобразователей, например, из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путём (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве и общения (киты , дельфины , летучие мыши , грызуны , долгопяты).

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твёрдого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон .

Ультразвук здесь создаётся подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учёными Коттелем и Гудменом в начале 50-х годов XX века. В нём поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку.

Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Сирена - механический источник упругих колебаний и, в том числе, ультразвука. Их частотный диапазон может достигать 100 кГц, но известны сирены, работающие на частоте до 600 кГц. Мощность сирен доходит до десятков кВт.

Воздушные динамические сирены применяются для сигнализации и технологических целей (коагуляция мелкодисперсных аэрозолей (осаждение туманов), разрушение пены, ускорение процессов массо- и теплообмена и т. д.).

Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Частота звука в сиренах зависят от количества отверстий и их геометрической формы, и скорости вращения ротора.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией , ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине (в том числе регенеративной) в качестве инструмента лечения.

Ультразвук обладает следующими эффектами:

  • противовоспалительным, рассасывающим действиями;
  • анальгезирующим, эспазмолитическим действиями;
  • кавитационным усилением проницаемости кожи. [ ]

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. [ ] Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоту и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учёта воды и теплоносителя с 1960-х годов в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднён, при соединении разнородных металлов, металлов с прочными оксидными плёнками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.), при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

Ультразвуком принято называть упругие колебания и волны, частоты которых превышают частоты звука, воспринимаемого человеческим ухом. Такое определение сложилось исторически, однако нижняя граница ультразвука, связанная с субъективными ощущениями человека, не может быть четкой, поскольку некоторые люди не могут слышать звуки с частотами в 10 кГц, а есть люди, воспринимающие частоты в 25 кГц. Для внесения четкости в определение нижней границы ультразвука с 1983 г. установлено считать ее равной 11,12 кГц (ГОСТ 12.1.001–83).

Верхняя граница ультразвука обусловлена физической природой упругих волн, которые могут распространяться в среде лишь при условии, что длина волны больше средней длины свободного пробега молекул в газах или межатомных расстояний в жидкостях и твердых телах. Поэтому в газах верхнюю границу ультразвуковых волн (УЗ) определяют из приблизительного равенства длины звуковой волны и средней длины свободного пробега молекул газа (~10 –6 м), что дает частоту порядка 1 ГГц (10 9 Гц). Расстояние между атомами и молекулами в кристаллической решетке твердого тела примерно равно 10 –10 м. Считая, что и длина волны ультразвука такого же порядка величины, получаем частоту 10 13 Гц. Упругие волны с частотами более 1 ГГц называют гиперзвуком.

Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона или инфразвука, и распространение ультразвука подчиняется законам, общим для всех акустических волн (законы отражения, преломления, рассеяния и т. п.). Скорости распространения УЗ волн примерно такие же, как и скорости слышимого звука (см. табл. 4), а поэтому длины ультразвуковых волн значительно меньше. Так, при распространении в воде (с = 1500 м/с) ультразвука с частотой 1 МГц длина волны l = 1500/10 6 = 1,5·10 –3 м = 1,5 мм. Благодаря малой длине волны дифракция ультразвука происходит на объектах меньших размеров, чем для слышимого звука. Поэтому во многих случаях к ультразвуку можно применять законы геометрической оптики и изготавливать ультразвуковые фокусирующие системы: выпуклые и вогнутые зеркала и линзы, которые используют для получения звуковых изображений в системах звукозаписи и акустической голографии. Помимо этого, фокусировка ультразвука позволяет концентрировать звуковую энергию, получая при этом большие интенсивности.

Поглощение ультразвука в веществе, даже в воздухе, весьма значительно, что обусловлено его малой длиной волны. Однако, как и для обычного звука, затухание ультразвука определяется не только его поглощением, но и отражением на границах раздела сред, отличающихся своими акустическими сопротивлениями. Этот фактор имеет большое значение при распространении ультразвука в живых организмах, ткани которых обладают самыми различными акустическими сопротивлениями (например, на границах мышца – надкостница – кость, на поверхностях полых органов и т. п.). Так как акустическое сопротивление биологических тканей в среднем в сотни раз превышает акустическое сопротивление воздуха, то на границе воздух – ткань происходит практически полное отражение ультразвука. Это создает определенные трудности при ультразвуковой терапии, так как слой воздуха всего в 0,01 мм между вибратором и кожей является непреодолимым препятствием для ультразвука. Поскольку избежать прослоек воздуха между кожей и излучателем невозможно, для заполнения имеющихся между ними неровностей используют специальные контактные вещества, которые должны удовлетворять определенным требованиям: иметь акустическое сопротивление, близкое к акустическим сопротивлениям кожи и излучателя, обладать малым коэффициентом поглощения ультразвука, иметь значительную вязкость и хорошо смачивать кожу, быть нетоксичными для организма. В качестве контактных веществ обычно используют вазелиновое масло, глицерин, ланолин и даже воду.


ПОЛУЧЕНИЕ И РЕГИСТРАЦИЯ УЛЬТРАЗВУКА

Для получения ультразвука используют механические и электромеханические генераторы.

К механическим генераторам относят газоструйные излучатели и сирены. В газоструйных излучателях (свистках и мембранных генераторах) источником энергии ультразвука служит кинетическая энергия газовой струи. Первым УЗ генератором был свисток Гальтона – короткая, закрытая с одного конца трубка с острыми краями, на которые направляется воздушная струя из кольцеобразного сопла. Срывы струи на острых концах трубки вызывают колебания воздуха, частота которых определяется длиной трубки. Свистки Гальтона позволяют получать ультразвук с частотой до 50 кГц. Интересно, что подобными свистками еще в прошлом веке пользовались браконьеры, подзывая охотничьих собак сигналами, не слышными для человека.

Сирены позволяют получать ультразвук с частотой до 500 кГц. Газоструйные излучатели и сирены служат почти единственными источниками мощных акустических колебаний в газовых средах, в которые из-за малого акустического сопротивления излучатели с твердой колеблющейся поверхностью не могут передать ультразвук большой интенсивности. Недостатком механических генераторов является широкий диапазон излучаемых ими частот, что ограничивает область их применения в биологии.

Электромеханические источники ультразвука преобразуют подводимую к ним электрическую энергию в энергию акустических колебаний. Наибольшее распространение получили пьезоэлектрические и магнитострикционные излучатели.

В 1880 г. французские ученые Пьер и Жак Кюри открыли явление, получившее название пьезоэлектрического эффекта (греч. пьезо – давлю). Если вырезать определенным образом из кристаллов некоторых веществ (кварца, сегнетовой соли) ; пластинку и сжать ее, то на ее гранях появятся разноименные электрические заряды. При замене сжатия растяжением знаки зарядов меняются. Пьезоэлектрический эффект обратим. Это означает, что если кристалл поместить в электрическое поле, то он будет растягиваться или сжиматься в зависимости от направления вектора напряженности электрического поля. В переменном электрическом поле кристалл будет деформироваться в такт с изменениями направлениям вектора напряженности и действовать на окружающее вещество как поршень, создавая сжатия и разрежения, т. е. продольную акустическую волну.

Прямой пьезоэлектрический эффект используют в приемниках ультразвука, в которых акустические колебания преобразуются в электрические. Но если к такому приемнику приложить, переменное напряжение соответствующей частоты, то оно преобразуется в ультразвуковые колебания и приемник работает как излучатель. Следовательно, один и тот же кристалл может служить и приемником, и излучателем ультразвука поочередно. Такой прибор называют ультразвуковым акустическим преобразователем (рис.). В связи с тем что применение ультразвука в различных областях науки, техники, медицины и ветеринарии с каждым годом возрастает, требуется все большее количество ультразвуковых преобразователей, однако запасы природного кварца не могут удовлетворить возрастающие в нем потребности. Наиболее подходящим заменителем кварца оказался титанат бария, представляющий собой аморфную смесь двух минеральных веществ – углекислого бария и двуокиси титана. Для придания ей нужных свойств аморфную массу нагревают до высокой температуры, при которой она размягчается, и помещают ее в электрическое поле. При этом происходит поляризация дипольных молекул. После охлаждения вещества в электрическом поле молекулы фиксируются в ориентировочном положении и вещество приобретает определенный электрический дипольный момент. У титаната бария пьезоэлектрический эффект в 50 раз сильнее, чем у кварца, а стоимость его невысока.

Преобразователи другого типа основаны на явлении магни-тострикции (лат. strictura–сжимание). Это явление заключается в том, что при намагничивании ферромагнитный стержень сжимается или растягивается в зависимости от направления намагничивания. Если стержень поместить в переменное магнитное поле, то его длина будет меняться в такт с изменениями электрического тока, создающего магнитное поле. Деформация стержня создает акустическую волну в окружающей среде.

Для изготовления магнитострикционных преобразователей применяют пермендюр, никель, железоалюминиевые сплавы – альсифёры. У них большие величины относительных деформаций, большая механическая плотность и меньшая чувствительность к температурным воздействиям.

В современной ультразвуковой аппаратуре используют оба вида преобразователей. Пьезоэлектрические применяют для получения ультразвука высоких частот (выше 100 кГц), магни-тострикционные– для получения ультразвука меньших частот. Для медицинских и ветеринарных целей обычно используют генераторы небольшой мощности (10–20 Вт) (рис.).

ВЗАИМОДЕЙСТВИЕ УЛЬТРАЗВУКА С ВЕЩЕСТВОМ

Рассмотрим, с какими параметрами колебательного движения приходится иметь дело при распространении ультразвука в веществе. Пусть излучатель создает волну с интенсивностью I =10 5 Вт/м 2 и частотой 10 5 Гц. I = 0,5rcA 2 w 2 = 2cA 2 rp 2 n 2 . Отсюда

Подставляя в формулу значения входящих в нее величин, получим, что амплитуда смещения частиц воды при данных условиях А = 0,6 мкм. Амплитудное значение ускорения частиц воды а м = Аw 2 = 2·4·10 5 м/с 2 , что в 24 000 раз превышает ускорение силы тяжести. Амплитудное значение акустического давления р а = rсАw = 5,6·10 5 Па @ 6 атм. При фокусировании ультразвука получаются еще большие давления.

При распространении ультразвуковой волны в жидкости во время полупериодов разрежения возникают растягивающие силы, которые могут привести к разрыву жидкости в данном месте и образованию пузырьков, заполненных паром этой жидкости. Это явление носит название кавитации (лат. cavum– пустота). Кавитационные пузырьки образуются, когда растягивающее напряжение в жидкости становится больше некоторого критического значения, называемого порогом кавитации. Для чистой воды теоретическое значение порога кавитации р к = 1,5·10 8 Па = 1500 атм. Реальные жидкости менее прочны в связи с тем, что в них всегда находятся зародыши кавитации – микроскопические газовые пузырьки, твердые частички с трещинами, заполненными газом, и т. п. Часто на поверхности пузырьков возникают электрические заряды. Захлопывание кавитационных пузырьков сопровождается сильным нагревом их содержимого, а также выделением газов, содержащих атомарный и ионизированный компоненты. В результате вещество в кавитационной области подвергается интенсивным воздействиям. Это проявляется в кавитационной эрозии, т. е. в разрушении поверхности твердых тел. Даже такие прочные вещества, как сталь и кварц, разрушаются под действием микроударных гидродинамических волн, возникающих при захлопывании пузырьков, не говоря уже о находящихся в жидкости биологических объектах, например микроорганизмах. Этим пользуются для очистки поверхности металлов от окалины, жировых пленок, а также для диспергирования твердых тел и получения эмульсий несмешивающихся жидкостей.

При интенсивности ультразвука менее 0,3-10 4 Вт/м 2 кавитация в тканях не происходит, и ультразвук вызывает ряд других эффектов. Так, в жидкости возникают акустические потоки, или «звуковой ветер», скорость которого достигает десятков сантиметров в секунду. Акустические потоки перемешивают облучаемые жидкости, изменяют физические свойства суспензий. Если в жидкости находятся частицы, обладающие противоположными электрическими зарядами и разными массами, то в ультразвуковой волне эти частицы будут отклоняться от положения равновесия на разные расстояния и в поле волны возникает переменная разность потенциалов (эффект Дебая). Такое явление происходит, например, в растворе поваренной соли, содержащей ионы Н + и в 35 раз более тяжелые ионы С1 – . При больших различиях в массах потенциал Дебая может достигать десятков и сотен мВ.

Поглощение ультразвука веществом сопровождается переходом механической энергии в тепловую. Тепло образуется в областях, примыкающих к границам раздела двух сред с различными акустическими сопротивлениями. При отражении ультразвука интенсивность волны вблизи границы увеличивается и соответственно возрастает количество поглощенной энергии. Легко убедиться в этом, прижав к влажной руке излучатель. Вскоре на противоположной стороне руки возникает болевое ощущение, похожее на боль от ожога, вызванное ультразвуком, отраженным на границе кожа – воздух. Однако тепловое действие ультразвука при интенсивностях, применяемых в терапии, очень незначительно.

В УЗ поле могут протекать как окислительные, так и восстановительные реакции, причем даже такие, которые в обычных условиях неосуществимы. Одной из характерных реакций является расщепление молекулы воды на радикалы Н + и ОН – с последующим образованием перекиси водорода Н 2 О 2 и некоторых жирных кислот. Значительное действие оказывает ультразвук на некоторые биохимические соединения: от белковых молекул отрываются молекулы аминокислот, происходит денатурация протеинов и т. п. Все эти реакции стимулируются, очевидно, колоссальными давлениями, возникающими в ударных кавитационных волнах, однако законченной теории звукохимических реакций в настоящее время еще не существует.

Ультразвук вызывает свечение воды и некоторых других жидкостей (УЗ люминесценция). Свечение это очень слабое, и его обычно регистрируют фотоумножителями. Причина свечения в основном заключается в том, что при захлопывании кавитационных пузырьков происходит сильное адиабатическое нагревание заключенного в них пара. Температура внутри пузырьков может достигать 10 4 К, что приводит к возбуждению атомов газа и излучению ими квантов света. Интенсивность УЗ люминесценции зависит от количества газа в пузырьке, от свойств жидкости и интенсивности ультразвука. Это явление несет с собой информацию о природе и кинетике процессов, происходящих при облучении жидкости ультразвуком. Как было показано В. Б. Акопяном и А. И. Журавлевым, при некоторых заболеваниях УЗ свечение ряда биологических жидкостей меняется, что может лечь в основу диагностики этих заболеваний.

ДЕЙСТВИЕ УЛЬТРАЗВУКА НА БИОЛОГИЧЕСКИЕ ОБЪЕКТЫ

На живые организмы ультразвук, как и другие физические факторы, оказывает возмущающее действие, следствием чего являются приспособительные реакции организма. Механизм возмущающего действия ультразвука изучен еще недостаточно, но можно утверждать, что он определяется совокупностью механического, термического и физико-химического действий. Эффективность этих факторов зависит от частоты и интенсивности ультразвука. Выше были вычислены амплитудные значения акустического давления и ускорения частиц среды в УЗ волне, которые оказались очень большими, однако они не дают представления о механических усилиях, приходящихся на одну клетку. Расчет сил, действующих на клетку в УЗ поле, был проведен В. Б. Акопяном, который показал, что если на клетку размером 5·10 – 5 м действует ультразвук с частотой 1 МГц и интенсивностью 10 4 Вт/м 2 , то максимальная разность растягивающих и сжимающих сил в противоположных концах клетки не превышает 10 –13 Н. Такие силы не могут оказывать на клетку заметного влияния, не говоря уже о ее разрушении. Поэтому растягивающие и сжимающие силы, действующие на клетку в УЗ волне, вряд ли могут приводить к ощутимым биологическим последствиям.

Более эффективны, по-видимому, акустические течения, приводящие к переносу вещества и перемешиванию жидкости. Внутри клетки, обладающей сложной внутренней структурой, микропотоки вполне могут менять взаимное расположение клеточных органелл, перемешивать цитоплазму и изменять ее вязкость, отрывать от клеточных мембран биологические макромолекулы (ферменты, гормоны, антигены), изменять поверхностный заряд, мембран и их проницаемость, оказывая влияние на жизнедеятельность клетки. Если мембраны не повреждены, то через некоторое время перешедшие во внеклеточную среду или в цитоплазму макромолекулы возвращаются обратно на поверхность мембран, хотя и неизвестно, попадают ли они именно на те места, с которых были вырваны, а если нет, то ведет ли это к каким-либо нарушениям физиологии клетки.

Разрушение мембран происходит при достаточно больших интенсивностях ультразвука, однако разные клетки обладают различной резистентностью: одни клетки разрушаются уже при интенсивностях порядка 0,1·10 4 Вт/м 2 , тогда как другие выдерживают интенсивность до 25·10 4 Вт/м 2 и выше. Как правило, более чувствительны клетки животных тканей и менее чувствительны растительные клетки, защищенные прочной оболочкой. О различной ультразвуковой резистентности эритроцитов говорилось в главе I. Облучение ультразвуком с интенсивностью более 0,3·10 4 Вт/м 2 (т.е. выше порога кавитации) используют для разрушения имеющихся в жидкости бактерий и вирусов. Так разрушают тифозные и туберкулезные палочки, стрептококки и пр. Следует отметить, что облучение ультразвуком с интенсивностью менее кавитационного порога может приводить к повышению жизнедеятельности клеток и к увеличению числа этих микроорганизмов, что вместо положительного эффекта приведет к отрицательному. Ультразвук, применяемый в терапии и диагностике, не вызывает кавитации в тканях. Это обусловлено либо заведомо низкими интенсивностями (от 0,05 до 0,1 Вт/см 2), либо использованием интенсивных (до 1 кВт/см 2), но коротких импульсов (от 1 до 10 мкс) при эхолокации внутренних органов. Усредненная по времени интенсивность ультразвука оказывается и в этом случае не выше 0,1-10 4 Вт/м 2 , что недостаточно для возникновения кавитации.

Нагревание тканей при их облучении терапевтическим ультразвуком весьма незначительно. Так, при облучении отдельных органов у коров в месте воздействия ультразвука температура кожи повышается не более чем на 1 °С при интенсивности 10 4 Вт/м 2 . При облучении ультразвуком теплота в основном выделяется не в объеме ткани, а на границах раздела тканей с разными акустическими сопротивлениями, или в одной и той же ткани на неоднородностях ее структуры. Возможно, что именно этим объясняется тот факт, что ткани со сложной структурой (легкие) более чувствительны к ультразвуку, чем однородные ткани (печень и др.). Сравнительно много тепла выделяется на границе мягких тканей и кости.

Не менее существенными могут оказаться и эффекты, связанные с потенциалом Дебая. Импульсы диагностического ультразвука способны обусловить в тканях потенциал Дебая до сотен мВ, что сравнимо по порядку величины с потенциалами клеточных мембран, а это может вызвать деполяризацию мембран и повышение их проницаемости по отношению к ионам, участвующим в клеточном метаболизме. Следует отметить, что изменение проницаемости клеточных мембран является универсальной реакцией на ультразвуковое воздействие, независимо от того, какой из факторов ультразвука, действующих на клетки, превалирует в том или ином случае.

Таким образом, биологическое действие ультразвука обусловлено многими связанными между собой процессами, некоторые из которых еще недостаточно исследованы до настоящего времени и описание которых не входит в задачу учебного пособия. Согласно В.Б. Акопяну, ультразвук вызывает в биологических объектах следующую цепочку превращений: ультразвуковое воздействие ® микропотоки в клетке ® повышение проницаемости клеточных мембран ® изменение состава внутриклеточной среды ® нарушение оптимальных условий для ферментативных процессов ® подавление ферментативных реакций в клетке ® синтез новых ферментов в клетке и т. д. Пороговым для биологического действия ультразвука будет такое значение его интенсивности, при котором не происходит нарушения проницаемости клеточных мембран, т. е. интенсивность не выше 0,01·10 4 Вт/м 2 .

Ультразвук, обладающий сильным биологическим свойством, можно применять в сельском хозяйстве. Опыты последних лет показали перспективность воздействия низкочастотным ультразвуком на семена злаковых и огородных культур, кормовых и декоративных растений.

УЛЬТРАЗВУК В МИРЕ ЖИВОТНЫХ

Некоторые птицы, ведущие ночной образ жизни, используют для эхолокации звуки слышимого диапазона (козодои, стрижи-саланганы). Козодои, например, издают резкие отрывистые крики с частой 7 кГц. После каждого крика птица улавливает звук, отраженный от препятствия, и узнает местоположение этого препятствия по направлению, откуда пришло эхо. Зная скорость распространения звука и время, прошедшее от его испускания до приема, можно вычислить расстояние до препятствия. Таких вычислений птица, конечно, не делает, но каким-то образом ее мозг позволяет хорошо ориентироваться в пространстве.

Наибольшего совершенства достигли ультразвуковые эхолокационные органы у летучих мышей. Поскольку пищей для них служат насекомые, т. е. предметы малых размеров, то для уменьшения дифракции на подобных объектах необходимо использовать колебания с малой длиной волны. В самом деле, если принять, что размер насекомого 3 мм, то дифракция на нем будет незначительной при длине волны такого же порядка величины, а для этого частота колебаний должна быть, по крайней мере, равной n = c /l = 340/3·10 –3 » 10 5 Гц = 100 кГц. Отсюда вытекает необходимость использования для эхолокации ультразвука, и, действительно, летучие мыши испускают сигналы с частотами порядка 100 кГц. Процесс эхолокации происходит следующим образом. Зверек испускает сигнал длительностью 1–2 мс, причем на это время его чувствительные ушки закрываются специальными мышцами. Затем сигнал прекращается, ушки открываются, и летучая мышь слышит отраженный сигнал. Во время охоты сигналы следуют один за другим до 250 раз в секунду.

Чувствительность эхолокационного аппарата летучих мышей очень высока. Так, например, Гриффин натягивал в темной комнате сетку из металлических проволок диаметром 0,12 мм с расстоянием между проволоками в 30 см, что лишь немного превышало размах крыльев летучих мышей. Тем не менее, зверьки свободно летали по комнате, не задевая за проволоки. Мощность воспринимаемого ими сигнала, отраженного от проволоки, была порядка 10 –17 Вт. Удивительна также способность летучих мышей выделять нужный сигнал из хаоса звуков. Во время охоты каждая летучая мышь воспринимает только те УЗ сигналы, которые она испускает сама. Очевидно, органы этих животных имеют строгую резонансную настройку на сигналы определенной частоты, и они не реагируют на сигналы, отличающиеся от собственных всего на долю герца. Такой избирательностью и чувствительностью не обладает пока ни одно локационное устройство, созданное человеком. Широко используют УЗ локацию дельфины. Чувствительность их локатора настолько велика, что они могут обнаруживать на расстоянии 20–30 м опущенную в воду дробинку. Диапазон частот, испускаемых дельфинами, составляет от нескольких десятков герц до 250 кГц, но максимум интенсивности приходится на 20–60 кГц. Для внутривидового общения дельфины используют звуки слышимого человеком диапазона, примерно до 400 Гц.

Ультразвук широко применяется в косметологии и физиотерапии, и представляет собой высокочастотные механические колебания частиц среды, которые распространяются в ней в виде попеременных сжатий и разрежений вещества. Частота ультразвуковых колебаний лежит в неслышном акустическом диапазоне (выше 16 кГц).

В физиотерапии и косметологии используют ультразвук частотой 24-42 кГц, 800-900 кГц или около 3000 кГц.

Основными физическими параметрами и величинами , которые используются для оценки свойств ультразвука, являются частота и интенсивность ультразвуковых колебаний.

Частота ультразвука

Частота колебаний - это число чередований сжатий и разряжений в единицу времени. Единица измерения в СИ - герц (Гц). 1 Гц - одно колебание в секунду. В терапевтической практике ультразвук используют в диапазоне частот 800-3000 кГц (1 кГц=1000 Гц). Выбор частоты ультразвука зависит от глубины расположения органов и тканей, подлежащих воздействию. При поверхностном их расположении применяют ультразвук высокой частоты (3 МГц), при более глубоком - более низкие частоты.

Глубина проникновения ультразвука

Глубина проникновения УЗ-колебаний зависит от их частоты . Чем больше частота колебаний, тем меньше глубина проникновения и наоборот.

  • При частоте 1600-3000 кГц ультразвук проникает на глубину 1-1,5 см (поглощается кожей).
  • при частоте 800-900 кГц - на 4-5 см.
  • при частоте 20-45 кГц проникает на глубину 8-14 см.

При этом следует иметь ввиду, что глубина проникновения веществ при фонофорезе значительно меньше, чем глубина проникновения ультразвуковых волн (колебаний).

Интенсивность ультразвука

Интенсивность ультразвуковых колебаний - это количество энергии, проходящее через 1 см² площади излучателя аппарата в течение 1 секунды. Единица измерения в системе СИ - Вт/см². Применяемую в физиотерапевтической и косметологической практике интенсивность ультразвуковых колебаний условно подразделяют на:

  • малую (0,05-0,4 Вт/см²)
  • среднюю (0,5-0,8 Вт/см²)
  • большую (0,9-1,2 Вт/см²)

малая интенсивность оказывает стимулирующее действие

средняя - коррегирующее действие (противовоспалительное, обезболивающее)

большая - рассасывающее действие.

Из новых методик интересна так называемая «ультразвуковая липосакция» - применение низкочастотного (20-45 кГц) ультразвука со сверхбольшой интенсивностью - до 3 Вт/см².

Скорость распространения ультразвука в различных средах

Скорость распространения ультразвуковых колебаний в тканях зависит от плотности среды и величины акустического сопротивления. Чем плотнее ткань, тем больше скорость распространения ультразвука. Так, в воздухе она равна 330 м/с, в воде - 1500 м/с, в сыворотке крови - 1060-1540 м/с, в костной ткани - 3350 м/с. Поэтому в неоднородных средах, какими являются ткани организма, распространение ультразвука происходит неравномерно. Таким образом, максимум поглощения ультразвуковой энергии наблюдается в костной ткани, на границе разных тканей, а также на внутренних мембранах клеток.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЯЗАНСКОЙ ОБЛАСТИ

Областное Государственное Бюджетное

Профессиональное образовательное учреждение

«Рязанский педагогический колледж»

ИНДИВИДУАЛЬНЫЙ УЧЕБНЫЙ ПРОЕКТ

По учебной дисциплине «Физика»

Тема: «Ультразвук и инфразвук в жизни человека»

Выполнила: Васильева

Алёна Николаевна

Специальность: 44.02.02 Преподавание

В начальных классах

Группа: 11ш

Руководитель: Галкина

Наталья Евгеньевна

Введение.

Я выбрала тему «Ультразвук и инфразвук в жизни человека», потому что считаю ее очень интересной и полезной.

Инфразвуки и ультразвуки находятся за пределами диапазона частот, вызывающих звуковые ощущения.

Инфразвуки, или упругие волны с частотами 16 Гц и ниже, возникают при самых различных условиях - при обдувании ветром различных предметов, вибрировании с достаточной амплитудой станков, корпуса движущегося автомобиля, работающего двигателя самолёта и т.д. Инфразвуки не воспринимаются органами слуха человека, но на них реагирует организм в целом, поэтому понятна необходимость детального изучения таких колебаний. Исследования инфразвука начались относительно недавно и в настоящее время стройной теории для указанного диапазона упругих волн не существует. Задача изучения инфразвука осложняется особенностями их воздействия на приборы и живые организмы. Так, внутренние органы человека имеют собственные частоты колебаний (резонансные частоты) в пределах от б до 8 Гц, поэтому воздействие инфразвуковьгх колебаний доста­точной амплитуды может вызвать неприятные и даже болевые ощущения. Поэтому одна из задач исследования инфразвука связана с определением степени влияния низкочастотных колебаний на нервную, сердечно-сосудистую системы человека, на его работоспособность.



С помощью ультразвука производится эффективная очистка поверхностей, деталей, узлов механизмов от различных загрязнений, следов коррозии и т.д. Так, с помощью ультразвуковых установок производится очистка деталей от масла, следов окалины, очистка днища корабля, более того, защитная ультразвуковая установка предотвращает обрастание днища морского судна различными морскими живыми и растительными организмами, тем самым сохраняя эксплуатационные качества корабля. С помощью ультразвука производят очистку воздуха от загрязнений, осаждая частицы примесей, используют ультразвук для борьбы с туманами и т.д.

Широкое применение находит ультразвук и при ускорении ряда технологических процессов, там, где применение других методов затруднительно. Например, при сварке или пайке тонких фольг или проволок именно ультразвук позволяет получать качественные со­единения. Подробнее обо всем этом я расскажу в основной части проекта.

Цель проекта:

Познакомиться с понятиями ультразвук и инфразвук. Вспомнить где они используются. Узнать влияние ультра и инфра звука на организм человека.

Задачи проекта:

1. Изучить материал по теме «Влияние ультразвука и инфразвука на организм человека»

2. Уметь применять изученный материал в жизни.

Ультразвук и инфразвук в жизни человека.

Влияние ультразвука.

Ультразвук - звуковые волны, имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц.

Специфическое ощущение, воспринимаемое нами как звук, является результатом воздействия на слуховой аппарат человека колебательного движения упругой среды - чаще всего воздуха. Однако не все колебания среды, доходя до уха, вызывают ощущение звука. Нижней границей слышимого звука являются колебания с частотой 20 колебаний в секунду (20 Гц), верхняя граница лежит между 16 000 и 20 000 Гц. Положение этих границ подвержено индивидуальным изменениям.

Область применения ультразвука

Вне указанного диапазона частот также существуют колебательные процессы, физически не отличающиеся от звуковых колебаний и волн, но не воспринимаемые ухом как звуки. Колебания среды с частотами выше верхней границы слуха, порядка десятков и сотен тысяч герц, принято называть ультразвуками.

Ультразвук за последние годы нашел широкое применение в народном хозяйстве, биологии и медицине. В США, например, в настоящее время насчитываются миллионы ультразвуковых установок.

В промышленности применяются ультразвуки, частота которых в миллиарды раз превышает интенсивность окружающих нас слышимых звуков. Ультразвуки могут быть фокусированы и создают при этом очень высокое местное давление. Ультразвуком можно дробить вещество и ускорять химические реакции. Ультразвук способен вводить в коллоиды воду. При помощи ультразвука значительно ускоряются процессы дубления кожи, крашения, отбелки и мытья тканей, получения синтетического волокна, заменителей кожи и пластмасс. Ультразвук применяется для дефектоскопии, позволяющей определять внутренние дефекты в деталях, для очистки котлов от накипи, подводных поверхностей кораблей, для лужения алюминием, серебрения и т. д. Ультразвук нашел применение в доменном производстве, на водном транспорте, в рыболовном деле и геологии.

Ультразвук используется в медицине для диагностических целей (выявление инородных тел), в стоматологии (бормашины), для изготовления эмульсий лекарственных веществ и т. д.

В настоящее время ультразвук малой интенсивности широко используется для терапевтических целей.

Ультразвук оказывает сложное и выраженное биологическое действие, сущность которого еще недостаточно выяснена. Это действие, по-видимому, в основном зависит от создаваемых в тканях огромных местных давлений и от местного теплового эффекта, связанного с поглощением энергии при глушении вибрации. Жидкие среды и газы поглощают ультразвук, а твердые тела хорошо его проводят. Кости также являются хорошими проводниками ультразвука.

Метод ультразвуковой дефектоскопии металлов и других материалов впервые был разработан и практически осуществлен в Советском Союзе в 1928-1930 гг. проф. С. Я. Соколовым.

Ультразвуковые волны представляют собой упругие колебания материальной среды, частота которых лежит за пределами слышимости в диапазоне от 20 кгц (волны низкой частоты) до 500 Мгц (волны высокой частоты).

Ультразвуковые колебания бывают продольные и поперечные. Если частицы среды перемещаются параллельно направлению распространения волны, то такая волна является продольной, если перпендикулярно-поперечной. Для отыскания дефектов в сварных швах используют в основном поперечные волны, направленные под углом к поверхности свариваемых деталей.

Ультразвуковые волны способны проникать в материальные среды на большую глубину, преломляясь и отражаясь при попадании на границу двух материалов с различной звуковой проницаемостью. Именно эта способность ультразвуковых волн используется в ультразвуковой дефектоскопии сварных соединений.

Ультразвуковые колебания могут распространяться в самых различных средах - воздухе, газах, дереве, металле, жидкостях.

Скорость распространения ультразвуковых волн C определяют по формуле:

где f - частота колебаний, гц; λ - длина волны, см.

Для выявления мелких дефектов в сварных швах следует пользоваться коротковолновыми ультразвуковыми колебаниями, так как волна, длина которой больше размера дефекта, может не выявить его.

Получение ультразвуковых волн

Ультразвуковые волны получают механическим, термическим, магнитострикционным (Магнитострикция - изменение размеров тела при намагничивании) и пьезоэлектрическим (Приставка «пьезо» означает «давить») способами.

Наиболее распространенным является последний способ, основанный на пьезоэлектрическом эффекте некоторых кристаллов (кварца, сегнетовой соли, титаната бария): если противоположные грани пластинки, вырезанной из кристалла, заряжать разноименным электричеством с частотой выше 20 000 гц, то в такт изменениям знаков зарядов пластинка будет вибрировать, передавая механические колебания в окружающую среду в виде ультразвуковой волны. Таким образом электрические колебания преобразовываются в механические.

В различных системах ультразвуковых дефектоскопов применяют генераторы высокой частоты, задающие на пьезоэлектрические пластинки электрические колебания от сотен тысяч до нескольких миллионов герц.

Пьезоэлектрические пластинки могут служить не только излучателями, но и приемниками ультразвука. В этом случае под действием ультразвуковых волн на гранях кристаллов-приемников возникают электрические заряды малой величины, которые регистрируются специальными усилительными устройствами.

Методы выявления дефектов ультразвуком

Существуют в основном два метода ультразвуковой дефектоскопии: теневой и эхо-импульсный (метод отраженных колебаний.)

Рис. 41. Схемы проведения ультразвуковой дефектоскопии а - теневым; б - эхо импульсным методом; 1 - щуп-излучатель; 2 - исследуемая деталь; 3 - щуп приемник; 4 - дефект

При теневом методе (рис. 41, а) ультразвуковые волны, идущие через сварной шов от источника ультразвуковых колебаний (щупа-излучателя), при встрече с дефектом не проникают через него, так как граница дефекта является границей двух разнородных сред (металл - шлак или металл - газ). За дефектом образуется область так называемой «звуковой тени». Интенсивность ультразвуковых колебаний, принятых щупом-приемником, резко падает, а изменение величины импульсов на экране электронно-лучевой трубки дефектоскопа указывает на наличие дефектов. Этот метод имеет ограниченное применение, так как необходим двусторонний доступ к шву, а в ряде случаев требуется снимать усиление шва.

При эхо-импульсном методе (рис. 41,6) щуп-излучатель посылает через сварной шов импульсы ультразвуковых волн, которые при встрече с дефектом отражаются от него и улавливаются щупом-приемником. Эти импульсы фиксируются на экране электроннолучевой трубки дефектоскопа в виде пиков, свидетельствующих о наличии дефекта. Измеряя время от момента посылки импульса до приема обратного сигнала, можно определить и глубину залегания дефектов. Основное достоинство этого метода состоит в том, что контроль можно проводить при одностороннем доступе к сварному шву без снятия усиления или предварительной обработки шва. Этот метод получил наибольшее применение при ультразвуковой дефектоскопии сварных швов.