Азот в организме человека. Профессиональные вредности соединений азота

Азот в организме человека. Профессиональные вредности соединений азота

АЗОТ (Nitrogenium, N) - химический элемент V группы периодической системы элементов Д. И. Менделеева, атом, номер 7, атомная масса 14,0067. Открыт Резерфордом (D. Rutherford) в 1772 году. Известны следующие изотопы азота (табл.).

В различных соединениях азота обладает переменной валентностью, которая может быть равна - 3, +1, +2, +3, +4 и +5.

Распространение в природе. Общее содержание азота в земной коре составляет около 0,016 вес. %. Основная его масса находится в воздухе в свободном, молекулярном виде - N 2 . Сухой воздух содержит в среднем 78,09% по объему (или 75,6% по весу) свободного азота. В относительно малых количествах свободный азот находится в растворенном состоянии в водах океанов. Азот в виде соединений с другими элементами (связанный азот) входит в состав всех растительных и животных организмов.

Жизнь неразрывно связана со свойствами легко изменяющихся сложных азотистых веществ - белков. В состав белков в среднем входит 15-17% азота. При отмирании организмов сложные азотистые соединения их в процессе круговорота азота превращаются в более простые соединения: аммиак, аммонийные соли, нитриты и нитраты. Все соединения азота, как органические, так и неорганические, содержащиеся в почве, объединяются под названием «азот почвы».

Получение азота

В лабораториях чистый азот получают обычно нагреванием концентрированного водного раствора азотисто-кислого аммония или раствора смеси хлористого аммония с азотистокислым натрием:

NH 4 Cl + NaNO 2 = N 2 + NaCl + 2H 2 O.

В технике азота с примесью до 3% аргона получают фракционированной перегонкой жидкого воздуха.

Свойства азота

В свободном состоянии азот представляет собой бесцветный газ без запаха и вкуса, состоящий из двухатомных молекул - N 2 . Вес 1 л его при t° 0° и давлении 760 мм рт. ст. равен 1,2506 г, t° кип - 195,8°, t° пл - 209,86°; плотность жидкого А. 0,808 (при t° - 195,8°), твердого - 1,026 (при t ° - 255°). В 1 мл воды при t° 0°, 20° и 38° и парциальном давлении азота, равном 760 мм, растворяется соответственно 0,0235, 0,0154 и 0,0122 мл азота.

Растворимость азота в крови меньше; она составляет при t° 38° 0,0110 мл А. При малых парциальных давлениях азота его растворимость в крови несколько больше, чем в воде.

В обычных условиях азот физиологически инертен, но при вдыхании воздуха, сжатого до 2-2,5 атм, наступает состояние, называемое азотным наркозом, сходное с опьянением алкоголем. Это явление может иметь место при водолазных работах (см.) на глубине нескольких десятков метров. Для предупреждения возникновения подобного состояния иногда пользуются искусственными газовыми смесями, в которых азот заменен гелием или каким-либо другим инертным газом. При резком и значительном снижении парциального давления азота растворимость его в крови и тканях настолько снижается, что часть его выделяется в виде пузырьков, что является одной из причин возникновения кессонной болезни, наблюдающейся у водолазов при быстром их подъеме на поверхность и у летчиков при больших скоростях взлета самолетов в верхние слои атмосферы (см. Декомпрессионная болезнь).

Применение азота

Свободный азот как химически неактивный газ применяется в лабораторной практике и технике во всех случаях, когда наличие в окружающей атмосфере кислорода недопустимо или нежелательно, например при проведении биологического эксперимента в анаэробных условиях, при переливании больших количеств горючих жидкостей (для предотвращения пожаров) и так далее. Основная же масса свободного азота используется в промышленности для синтеза аммиака, цианамида кальция и азотной кислоты, которые являются исходными веществами для получения азотных удобрений, взрывчатых веществ, красок, лаков, фармацевтических препаратов и другое.

Соединения азота

Свободный азот при обычных температурах химически инертен; при высокой температуре вступает в соединение со многими элементами.

С водородом азот образует ряд соединений, основными из которых являются следующие:

3. Азотистоводородная кислота (HN 3) - бесцветная, кипящая при t° 37° жидкость с резким запахом. Взрывается с большой силой при нагревании. В водных растворах устойчива и проявляет свойства слабой кислоты. Соли ее - азиды - неустойчивы и взрываются при нагревании или ударе. Азид свинца Pb(N 3) 2 применяется в качестве детонатора. Вдыхание паров HN3 вызывает сильную головную боль и раздражение слизистых оболочек.

С кислородом азот образует пять окислов.

1. Закись азота, или веселящий газ (N 2 O), - бесцветный газ, получают при нагревании (выше 190°) азотнокислого аммония:

NH 4 NO 3 = N 2 O + 2H 2 O. В смеси с кислородом закись азота применяют как слабый наркотик, вызывающий состояние опьянения, эйфории, притупление болевой чувствительности. Применяется для ингаляционного наркоза (см.).

2. Окись азота (NO) - бесцветный газ, плохо растворимый в воде; в лабораториях получают действием азотной кислоты средней концентрации на медь:

8HNO 3 + 3Cu = 2NO + 3Cu (NO 3) 2 + 4H 2 O, в технике - продуванием воздуха через пламя электрической дуги. На воздухе мгновенно окисляется, образуя красно-бурые пары двуокиси азота; вместе с последней вызывает отравления организма (см. ниже - Профессиональные вредности соединений азота).

3. Двуокись азота (NO 2) - красно-бурый газ, имеющий характерный запах и состоящий из собственно двуокиси А. и ее бесцветного полимера - четырехокиси азота (N 2 O 4) - азотноватого ангидрида. Двуокись азота легко сгущается в красно-бурую жидкость, кипящую при t° 22,4° и затвердевающую при t° - 11° в бесцветные кристаллы. Растворяется в воде с образованием азотистой и азотной кислот:

2NO 2 + H 2 O = HNO 2 + HNO 3 .

Является сильным окислителем и опасным ядом. Двуокись азота образуется при получении азотной кислоты, при реакциях нитрования, травлении металлов и тому подобное и поэтому представляет собой профессиональный яд.

4. Трехокись азота, ангидрид азотистой к-ты (N 2 O 3), - темно-синяя жидкость, затвердевающая при t° - 103° в голубые кристаллы. Устойчива лишь при низких температурах. С водой образует слабую и непрочную азотистую кислоту, со щелочами - соли азотистой кислоты - нитриты.

5. Пятиокись азота, ангидрид азотной к-ты (N 2 O 5), - бесцветные призматические кристаллы, имеющие плотность 1,63, плавящиеся при t° 30° в желтую, слегка разлагающуюся жидкость; разложение усиливается при нагревании и при действии света. Температура кипения около 50°. С водой образует сильную, довольно устойчивую азотную кислоту, со щелочами - соли этой кислоты - нитраты.

При нагревании азот непосредственно соединяется со многими металлами, образуя нитриды металлов, например Li3N, Mg 3 N 2 , AlN и др. Многие из них разлагаются водой с образованием аммиака, например

Mg 3 N 2 + 6H 2 O = 2NH 3 + 3Mg(OH) 2 .

Азот входит в состав большого числа органических соединений, среди которых особое значение имеют алкалоиды, аминокислоты, амины, нитросоединения, цианистые соединения и наиболее сложные природные соединения - белки.

Фиксация атмосферного азота. В течение долгого времени исходными веществами для получения разнообразных соединений азота, необходимых для сельского хозяйства, промышленности и военного дела, служили природная чилийская селитра и аммиак, получаемый при сухой перегонке каменного угля. С истощением залежей чилийской селитры человечеству грозил «азотный голод». Проблема азотного голода была разрешена в конце 19 и начале 20 века путем разработки ряда промышленных методов фиксации атмосферного азота. Наиболее важным из них является синтез аммиака по схеме:

Определение азота

Для определения свободного азота анализируемый газ приводят в контакт с нагретым магнием; при наличии азота образуется нитрид магния, который с водой дает аммиак.

Круговорот азота

Азот является важнейшим биогенным элементом, необходимым для построения белков и нуклеиновых кислот. Однако азот атмосферы недоступен для животных и большей части растений. Поэтому в круговороте азота первостепенное значение имеет процесс его биологической фиксации (фиксация молекулярного азота атмосферы). Азотфиксация осуществляется азотфиксирующими микроорганизмами, например бактериями из рода Rhizobium, или клубеньковыми бактериями, живущими в симбиозе (см.) с бобовыми растениями (горох, люцерна, соя, люпин и другие), на корнях которых образуются клубеньки, содержащие бактерии, способные усваивать молекулярный азот. К симбиотическим азотфиксаторам относятся также некоторые актиномицеты, живущие в корневых клубеньках ольхи, лоха, облепихи и так далее. Активными азотфиксаторами являются также некоторые свободноживущие микроорганизмы, обитающие в почве, пресных и соленых водоемах. Это анаэробная спороносная бактерия клостридиум (Clostridium pasteurianum), открытая С. Н. Виноградским, аэробная бактерия - азотобактер (см. Azotobacter). Способностью усваивать молекулярный азот обладают, кроме того, микобактерии, некоторые виды сине-зеленых водорослей (Nostoc, Anabaena и др.), а также фотосинтезирующие бактерии.

Наибольшее значение в обогащении почвы азотом имеют клубеньковые бактерии. В результате деятельности этих бактерий в почву вносится 100-250 кг/га за сезон; сине-зеленые водоросли на рисовых полях фиксируют до 200 кг/га азота в год. Свободноживущие азотфиксирующие бактерии связывают несколько десятков килограммов азота на один гектар почвы.

С. Н. Виноградский впервые (1894) высказал предположение о том, что первоначальным продуктом процесса биологической азотфиксации является аммиак. В настоящее время это предположение полностью подтверждено. Доказано, что превращение N 2 в NH 3 представляет собой ферментативный процесс. Фермент, осуществляющий этот процесс (нитрогеназа), состоит из двух белковых компонентов, активен только в отсутствие кислорода, а сам процесс происходит за счет энергии аденозинтрифосфорной кислоты (АТФ). Растения, а также микроорганизмы затем превращают неорганический аммонийный азот в его органические соединения (аминокислоты, белки, нуклеиновые кислоты и так далее), и в таком виде он становится доступным для животных и человека, включаясь в обменные процессы, протекающие в их организмах. Органический азот животных и растений попадает в почву (с выделениями животных или продуктами их разложения) и перерабатывается обитающими там различными червями, моллюсками, нематодами, насекомыми, а также микроорганизмами. Микроорганизмы почвы - аммонификаторы (гнилостные бактерии, некоторые актиномицеты и грибы) - минерализуют в свою очередь органический азот почвы (тела животных и растений, органические удобрения, гумус) до аммония. Аммонификация - комплекс ферментативных процессов, протекающих в основном в два этапа: гидролиз белков и нуклеиновых кислот до аминокислот и азотистых оснований и последующее разложение этих соединений до аммиака. Образовавшийся аммиак нейтрализуется, реагируя с содержащимися в почве органическими и неорганическими кислотами. При этом происходит образование аммонийных солей. Аммонийные соли и аммиак в свою очередь подвергаются нитрификации под воздействием нитрифицирующих бактерий (открытых в 1890 году С. Н. Виноградским) с образованием нитратов и нитритов.

Процессы нитрификации и аммонификации обеспечивают растения легко усваиваемыми соединениями азота. Аммонийные соли и нитраты усваиваются растениями и микроорганизмами, превращаясь в азотные органических соединений. Однако часть азота превращается в почве в молекулярный азот в результате процесса денитрификации, осуществляемого живущими в почве микроорганизмами - денитрификаторами (рис.). Денитрифицирующие бактерии широко распространены в природе, встречаясь в большом количестве в почве, навозе и в меньшем - в воде рек, озер и морей. Наиболее типичные денитрификаторы - подвижные, грамотрицательные палочки. К ним относятся Bacterium fluorescens, В. denitrificans, В. pyocyaneum и другое.

Процесс денитрификации приводит к потере доступного растениям азота, однако постоянно идущий процесс азотфиксации в какой-то степени компенсирует эти потери, а в известных условиях (в частности, при богатстве почвы безазотистыми органическими веществами) и значительно обогащает почву связанным азотом.

В целом совокупное действие процессов азотфиксации, нитрификации и денитрификации имеет большое биогеохимическое значение, способствуя сохранению динамического равновесия между содержанием молекулярного азота в атмосфере и связанного азота почвы, растительного и животного мира.

Круговорот азота, таким образом, играет важнейшую роль в поддержании жизни на Земле.

Профессиональные вредности соединений азота

К числу наиболее вредных в профессиональном отношении соединений азота относятся азотная кислота (см.), аммиак (см.), аминосоединения (см. Амины) и амидосоединения (см. Амиды), а также смеси окислов азота, или нитрогазов (N 2 O, NO, NO 2 , N 2 O 4 и N 2 O 5). Последние образуются при производстве и применении азотной кислоты (в процессе взаимодействия ее с различными металлами или органическими веществами), в процессе термического окисления азота воздуха при электро- и газосварке, работе дизельных и карбюраторных двигателей, сжигании топлива в мощных котельных, а также при взрывных работах и так далее. Общий характер действия нитрогазов на организм зависит от содержания в газовой смеси различных окислов азота. В основном отравление протекает по раздражающему, или нитритному,типу действия. При контакте окислов азота с влажной поверхностью легких образуются азотная и азотистая кислоты, которые поражают легочную ткань, вызывая отек легких. Одновременно в крови образуются нитраты (см.) и нитриты (см.), непосредственно действующие на кровеносные сосуды, расширяя их и вызывая снижение кровяного давления. Нитриты, взаимодействуя с оксигемоглобином, превращают его в метгемоглобин, вызывая метгемоглобинемию (см.). Общим следствием действия окислов азота является кислородная недостаточность.

В производственных условиях возможны случаи воздействия отдельных окислов азота (см. ниже).

Закись азота. Большие ее концентрации вызывают шум в ушах, асфиксию, потерю сознания. Смерть наступает от паралича дыхательного центра.

Окись азота действует на центральную нервную систему, воздействует на гемоглобин (переводит оксигемоглобин в метгемоглобин).

При легком отравлении окисью азота наблюдается общая слабость, сонливость, головокружение (симптомы обратимы).

При более тяжелом отравлении начальные симптомы усиливаются, к ним присоединяется тошнота, иногда рвота, наступает полуобморочное состояние. При отравлениях средней тяжести резкая слабость и головокружение продолжаются много часов, нередко наблюдается синюшность слизистых оболочек и кожи, учащение пульса. При тяжелых отравлениях начальные явления нередко стихают, но после 1-3-дневной ремиссии появляются слабость и головокружение, наблюдаются снижение кровяного давления, серо-синяя окраска слизистых оболочек и кожи, увеличение и болезненность печени; границы сердца расширены, тоны глухие, пульс замедлен. Возникают полиневриты, полиневралгии. Кровь шоколадно-бурого цвета, повышенной вязкости. Последствия тяжелого отравления могут длиться более года: нарушение ассоциативных способностей, ослабление памяти и мышечной силы, общая слабость, головная боль, головокружение, быстрая утомляемость.

Двуокись азота. Острое отравление начинается с легкого кашля, в более тяжелых случаях - с сильного кашля, чувства стеснения в груди, головной боли, иногда рвоты, саливации. Период относительно удовлетворительного состояния длится 2-18 час. Затем появляются признаки нарастающего отека легких: сильная слабость, увеличивающийся кашель, боли в груди, цианоз, в легких много влажных хрипов, учащенное сердцебиение, иногда озноб, повышение температуры. Нередки значительные расстройства со стороны желудочно-кишечного тракта: тошнота, рвота, понос, сильные боли в верхней части живота. Отек легких характеризуется тяжелым состоянием (резкий цианоз, сильная одышка, учащенный пульс, кашель с пенистой мокротой, иногда с кровью). Кровяное давление в норме, в крови - увеличение количества эритроцитов и гемоглобина, лейкоцитоз, замедленная РОЭ. Рентгенологически - пониженная прозрачность легочных полей, в обоих легких большое количество хлопьевидных затемнений различной величины. Токсический отек легких сопровождается «синим» типом гипоксемии, при осложнении коллапсом наблюдается «серый» тип (см. Гипоксия). Нередки осложнения пневмонией. Возможен смертельный исход. На секции - отек легких, кровоизлияния в них, темная жидкая кровь в сердце и сосудах. Состояние отравленных и прогноз ухудшается, если пострадавшие до отравления страдали заболеваниями сердца или легких.

При хронических отравлениях - хронические воспалительные заболевания верхних дыхательных путей, хронические бронхиты, эмфизема, понижение кровяного давления, зеленоватый налет на зубах, разрушение коронок резцов.

Ангидрид азотистой кислоты действует на организм аналогично окиси азота и другим низшим его окислам.

Первая помощь при отравлениях соединениями азота - перенести пострадавшего на свежий воздух; обеспечить полный покой, вдыхание кислорода. По показаниям - сердечные средства, при остановке дыхания - лобелин. Затем обязательная транспортировка пострадавшего в лежачем положении в стационар. При признаках начинающегося отека легких - внутривенно 10-20 мл 10% раствора хлорида кальция, 20 мл 40% раствора глюкозы с аскорбиновой к-той (500 мг), кислородная терапия.

Лечение развившегося отека легких зависит от типа гипоксемии. При «синем» типе - прерывистое введение кислорода (карбоген противопоказан), кровопускание (200-300 мл), при необходимости - повторение его через 6-8 час.; рекомендуются средства, понижающие кровяное давление, сердечные средства. При «сером» типе аноксемии - стимуляция дыхательного и вазомоторного центра путем прерывистого вдыхания карбогена, кофеин, эфедрин, внутривенно 50-100 мл 40% раствора глюкозы. Кровопускание противопоказано.

В целях профилактики и лечения пневмоний - раннее назначение сульфаниламидов и антибиотиков.

Профилактика: индивидуальная защита - фильтрующие противогазы марок В, М, KB, кислотозащитные перчатки и сапоги, герметичные очки, специальная одежда. Необходима полная герметизация производственного оборудования, где могут образоваться и выделяться нитрогазы, укрытие фиксированных источников выделения этих газов, местная вентиляционная система.

Предельно допустимая концентрация для окислов азота в воздухе рабочих помещений 5 мг/м 3 (в пересчете на NО 2), в атмосферном воздухе населенных пунктов 0,085 мг/м 3 или 0,4 мг/м 3 (для азотной кислоты).

Определение в воздухе окислов азота основано на поглощении двуокиси и четырехокиси азота раствором йодида калия и колориметрическом определении образовавшейся азотистой кислоты с реактивом Грисса-Илошваи.

Библиография: Некрасов Б. В. Основы общей химии, т. 1, с. 377, М., 1969; Реми Г. Курс неорганической химии, пер. с нем., т. 1, с. 560, М., 1972.

Круговорот А. - Виноградский С. Н. Микробиология почвы, М., 1952; Кретович В. Л. Обмен азота в растениях, М., 1972, библиогр.; Мишустин Е. Н. и Шильникова В. К. Биологическая фиксация атмосферного азота, М., 1968, библиогр.

Профессиональные вредности соединений А. - Вредные вещества в промышленности, под ред. Н. В. Лазарева, ч. 2, с. 136, Л., 1971; Гигиена труда в химической промышленности, под ред. З. А. Волковой и др., с. 373, М., 1967; Гуртовой Ю. А. Отравление парами азотной кислоты, Суд.-мед. экспертиза, т. 12, № 3, с. 45, 1969; Неймарк Е. З. и Зингер Ф. X. Профессиональные отравления рабочих угольных шахт, их лечение и профилактика, с. 34, М., 1961; Перегуд Е. А., Быховская М. С. и Гернет Е. В. Быстрые методы определения вредных веществ в воздухе, с. 67, М., 1970; Сафронов В. А. Особенности клинического течения отека легких при комбинированных поражениях азотной кислотой, Воен.-мед. журн., № 7, с. 32, 1966; Air quality criteria for nitrogen oxides, Washington, 1971, bibliogr.

В. П. Мишин; З. Г. Евстигнеева, В. Л. Кретович (круговорот А.); Е. Н. Марченко (проф.).

Свойства элементов V-A подгруппы

Элемент

Азот
N

Фосфор
Р

Мышьяк
As

Сурьма
Sb

Висмут
Bi

Свойство

Порядковый номер элемента

7

15

33

51

83

Относительная атомная масса

14,007

30,974

74,922

121,75

208,980

Температура плавления,С 0

-210

44,1
(белый)

817
(4МПа)

631

271

Температура кипения,С 0

-196

280
(белый)

613

1380

1560

Плотность г/см 3

0,96
(твёрдый)

1,82
(белый)

5,72

6,68

9,80

Степени окисления

+5, +3,-3

+5, +3,-3

+5, +3,-3

+5, +3,-3

+5, +3,-3

1. Строение атомов химических элементов

Название

химического

элемента

Схема строения атома

Электронное строение последнего энергоуровня

Формула высшего оксида R 2 O 5

Формула летучего водородного соединения

RH 3

1. Азот

N+7) 2) 5

…2s 2 2p 3

N 2 O 5

NH 3

2. Фосфор

P+15) 2) 8) 5

…3s 2 3p 3

P 2 O 5

PH 3

3. Мышьяк

As+33) 2) 8) 18) 5

…4s 2 4p 3

As 2 O 5

AsH 3

4. Сурьма

Sb+51) 2) 8) 18) 18) 5

…5s 2 5p 3

Sb 2 O 5

SbH 3

5. Висмут

Bi+83) 2) 8) 18) 32) 18) 5

…6s 2 6p 3

Bi 2 O 5

BiH 3


Наличие трех неспаренных электронов на внешнем энергетическом уровне объясняет то, что в нормальном, невозбужденном состоянии валентность элементов подгруппы азота равна трем.

У атомов элементов подгруппы азота (кроме азота - внешний уровень азота состоит только из двух подуровней - 2s и 2p) на внешних энергетических уровнях имеются вакантные ячейки d-подуровня, поэтому они могут распарить один электрон с s-подуровня и перенести его на d-подуровень. Таким образом, валентность фосфора, мышьяка, сурьмы и висмута равна 5.

Элементы группы азота образуют с водородом соединения состава RH 3 , а с кислородом оксиды вида - R 2 O 3 и R 2 O 5 . Оксидам соответствуют кислоты HRO 2 и HRO 3 (и ортокислоты H 3 PO 4 , кроме азота).

Высшая степень окисления этих элементов равна +5, а низшая -3.

Так как заряд ядра атомов увеличивается, число электронов на внешнем уровне постоянно, число энергетических уровней в атомах растёт и радиус атома увеличивается от азота к висмуту, притяжение отрицательных электронов к положительному ядру ослабевает испособность к отдаче электронов увеличивается, и, следовательно, в подгруппе азота с ростом порядкового номера неметаллические свойства убывают, а металлические усиливаются.

Азот - неметалл, висмут - металл. От азота к висмуту прочность соединений RH 3 уменьшается, а прочность кислородных соединений возрастает.

Наибольшее значение среди элементов подгруппы азота имеют азот и фосфор .

Азот, физические и химические свойства, получение и применение

1. Азот – химический элемент

N +7) 2) 5

1 s 2 2 s 2 2 p 3 незавершённый внешний уровень, p -элемент, неметалл

Ar (N )=14

2. Возможные степени окисления

Из-за наличия трёх неспаренных электронов азот очень активен, находится только в виде соединений. Азот проявляет в соединениях степени окисления от «-3» до «+5»


3. Азот – простое вещество, строение молекулы, физические свойства

Азо́т (от греч. ἀ ζωτος - безжизненный, лат. Nitrogenium ), вместо предыдущих названий («флогистированный», «мефитический» и «испорченный» воздух) предложил в 1787 году Антуан Лавуазье . Как показано выше, в то время уже было известно, что азот не поддерживает ни горения, ни дыхания. Это свойство и сочли наиболее важным. Хотя впоследствии выяснилось, что азот, наоборот, крайне необходим для всех живых существ, название сохранилось во французском и русском языках.

N 2 – ковалентная неполярная связь, тройная (σ, 2π), молекулярная кристаллическая решётка

Вывод:

1. Малая реакционная способность при обычной температуре

2. Газ, без цвета, запаха, легче воздуха

Mr ( B оздуха)/ Mr ( N 2 ) = 29/28

4. Химические свойства азота

N – окислитель (0 → -3)

N – восстановитель (0 → +5)

1. С металлами образуются нитриды M x N y

- при нагревании с Mg и щелочно-земельными и щелочными:

3С a + N 2 = Ca 3 N 2 (при t)

- c Li при к t комнатной

Нитриды разлагаются водой

Са 3 N 2 + 6H 2 O = 3Ca(OH) 2 + 2NH 3

2. С водородом

3 H 2 + N 2 ↔ 2 NH 3

(условия - T , p , kat )

N 2 + O 2 ↔ 2 NO – Q

(при t= 2000 C)

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

5. Получение:

В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (–195,8°C), чем другого компонента воздуха - кислорода (–182,9°C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара.

В лаборатории чистый («химический») азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH 4 Cl к твердому нитриту натрия NaNO 2:

NaNO 2 + NH 4 Cl = NaCl + N 2 + 2H 2 O.

Можно также нагревать твердый нитрит аммония:

NH 4 NO 2 = N 2 + 2H 2 O. ОПЫТ

6. Применение:

В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения.

7. Биологическая роль

Азот является элементом, необходимым для существования животных и растений, он входит в состав белков (16-18 % по массе), аминокислот, нуклеиновых кислот, нуклеопротеидов, хлорофилла,гемоглобина и др. В составе живых клеток по числу атомов азота около 2%, по массовой доле - около 2,5 % (четвертое место после водорода, углерода и кислорода). В связи с этим значительное количество связанного азота содержится в живых организмах, «мёртвой органике» и дисперсном веществе морей и океанов. Это количество оценивается примерно в 1,9·10 11 т. В результате процессов гниения и разложения азотсодержащей органики, при условии благоприятных факторов окружающей среды, могут образоваться природные залежи полезных ископаемых, содержащие азот, например, «чилийская селитраN 2 → Li 3 N → NH 3

№2. Составьте уравнения реакции взаимодействия азота с кислородом, магнием и водородом. Для каждой реакции составьте электронный баланс, укажите окислитель и восстановитель.

№3. В одном цилиндре находится газ азот, в другом - кислород, а в третьем - углекислый газ. Как различить эти газы?

№4. В некоторых горючих газах содержится в виде примеси свободный азот. Может ли при сгорании таких газов в обыкновенных газовых плитах образоваться оксид азота (II). Почему?

Азот - химический элемент, который известен каждому. Его обозначают буквой N. Он, можно сказать, основа неорганической химии, и поэтому его начинают изучать еще в восьмом классе. В этой статье мы подробно рассмотрим азот, а также его характеристики и свойства.

История открытия элемента

Такие соединения, как аммиак, селитра, азотная кислота, были известны и применялись на практике задолго до получения чистого азота в свободном состоянии.


Во время эксперимента, проведенного в 1772 году, Даниель Резерфорд сжигал фосфор и прочие вещества в колоколе из стекла. Он выяснил, что газ, остающийся после сгорания соединений, не поддерживает горения и дыхания, и назвал его «удушливым воздухом».

В 1787 году Антуан Лавуазье установил, что газы, входящие в состав обычного воздуха, - это простые химические элементы, и предложил название «Азот». Чуть позже (в 1784 г.) физик Генри Кавендиш доказал, что это вещество входит в состав селитры (группы нитратов). Отсюда происходит латинское название азота (от позднелатинского nitrum и греческого gennao), предложенное Ж. А. Шапталем в 1790 году.

К началу XIX века учеными были выяснены химическая инертность элемента в свободном состоянии и его исключительная роль в соединениях с другими веществами. С этого момента «связывание» азота воздуха стало важнейшей технической проблемой химии.

Физические свойства


Азот немного легче воздуха. Его плотность составляет 1,2506 кг/м³ (0 °С, 760 мм рт. ст.), температура плавления - -209,86 °С, кипения - -195,8 °С. Азот с трудом сжижается. Его критическая температура относительно низка (-147,1 °С), при этом критическое давление довольно высоко - 3,39 Мн/м². Плотность в жидком состоянии - 808 кг/м³. В воде этот элемент менее растворим, чем кислород: в 1 м³ (при 0 °С) Н₂О может раствориться 23,3 г N. Этот показатель выше при работе с некоторыми углеводородами.

При нагревании до невысоких температур этот элемент взаимодействует только с активными металлами. Например, с литием, кальцием, магнием. С большинством других веществ азот вступает в реакцию в присутствии катализаторов и/или при высокой температуре.

Хорошо изучены соединения N с О₂ (кислородом) N₂O₅, NO, N₂O₃, N₂O, NO₂. Из них при взаимодействии элементов (t - 4000 °С) образуется оксид NO. Далее в процессе охлаждения он окисляется до NO₂. Оксиды азота образуются в воздухе при прохождении атмосферных разрядов. Их можно получить действием ионизирующих излучений на смесь N с О₂.


При растворении в воде N₂O₃ и N₂O₅ соответственно получаются кислоты HNO₂ и HNO₂, образующие соли - нитраты и нитриты. Азот соединяется с водородом исключительно в присутствии катализаторов и при высокой температуре, образуя NH₃ (аммиак). Кроме того, известны и другие (они довольно многочисленны) соединения N с H₂, к примеру диимид HN = NH, гидразин H₂N-NH₂, октазон N₈H₁₄, кислота HN₃ и другие.

Стоит сказать, что большинство соединений водород + азот выделены исключительно в виде органических производных. Этот элемент не взаимодействует (непосредственно) с галогенами, поэтому все его галогениды получают только косвенным путем. К примеру, NF₃ образуется при взаимодействии аммиака с фтором.

Большинство галогенидов азота - малостойкие соединения, более устойчивы оксигалогениды: NOBr, NO₂F, NOF, NOCl, NO₂Cl. Непосредственного соединения N с серой также не происходит, N₄S₄ получается в процессе реакции аммиак + жидкая сера. Во время взаимодействия раскаленного кокса с N образуется циан (CN)₂. В процессе нагревания ацетилена С₂Н₂ с азотом до 1500 °С можно получить цианистый водород HCN. При взаимодействии N с металлами при относительно высоких температурах образуются нитриды (к примеру, Mg₃N₂).

При воздействии на обычный азот электроразрядов [при давлении 130–270 н/м² (соответствует 1–2 мм рт. cт.)] и при разложении Mg₃N₂, BN, TiNx и Ca₃N₂, а также при электроразрядах в воздухе может быть образован активный азот, обладающий повышенным запасом энергии. Он, в отличие от молекулярного, весьма энергично взаимодействует с водородом, парами серы, кислородом, некоторыми металлами и фосфором.

Азот входит в состав довольно многих важнейших органических соединений, в том числе - аминокислот, аминов, нитросоединений и прочих.

Получение азота

В лаборатории этот элемент может быть легко получен в процессе нагревания концентрированного раствора нитрита аммония (формула: NH₄NO₂ = N₂ + 2H₂O). Технический метод получения N основан на разделении заранее сжиженного воздуха, который в дальнейшем подвергается разгонке.

Область применения

Основная часть получаемого свободного азота используется при промышленном производстве аммиака, который потом в довольно больших количествах перерабатывается на удобрения, взрывчатые вещества и т. п.

Кроме прямого синтеза NH₃ из элементов, применяется разработанный в начале прошлого века цианамидный метод. Он основан на том, что при t = 1000 °С карбид кальция (образованный накаливанием смеси угля и извести в электропечи) реагирует со свободным азотом (формула: СаС₂ + N₂ = CaCN₂ + С). Полученный цианамид кальция под действием разогретого водяного пара разлагается на CaCO₃ и 2NH₃.

В свободном виде данный элемент применяется во многих отраслях промышленности: в качестве инертной среды при разнообразных металлургических и химических процессах, при перекачке горючих жидкостей, для заполнения пространства в ртутных термометрах и т. д. В жидком состоянии он используется в различных холодильных установках. Его транспортируют и хранят в стальных сосудах Дьюара, а сжатый газ - в баллонах.

Широко применяют и многие соединения азота. Их производство стало усиленно развиваться после Первой мировой войны и на данный момент достигло поистине огромных масштабов.


Это вещество является одним из основных биогенных элементов и входит в состав важнейших элементов живых клеток - нуклеиновых кислот и белков. Однако количество азота в живых организмах невелико (примерно 1–3 % на сухую массу). Имеющийся в атмосфере молекулярный материал усваивают лишь сине-зеленые водоросли и некоторые микроорганизмы.

Довольно большие запасы этого вещества сосредоточены в почве в виде различных минеральных (нитраты, аммонийные соли) и органических соединений (в составе нуклеиновых кислот, белков и продуктов их распада, включая еще не полностью разложившиеся остатки флоры и фауны).

Растения отлично усваивают азот из грунта в виде органических и неорганических соединений. В природных условиях большое значение имеют особые почвенные микроорганизмы (аммонификаторы), которые способны минерализировать органический N почвы до солей аммония.

Нитратный азот грунта образуется в процессе жизнедеятельности нитрифицирующих бактерий, открытых С. Виноградским в 1890 году. Они окисляют аммонийные соли и аммиак до нитратов. Часть усвояемого флорой и фауной вещества теряется из-за воздействия денитрифицирующих бактерий.

Микроорганизмы и растения отлично усваивают как нитратный, так и аммонийный N. Они активно превращают неорганический материал в различные органические соединения - аминокислоты и амиды (глутамин и аспарагин). Последние входят в состав многих белков микроорганизмов, растений и животных. Синтез аспарагина и глутамина путем амидирования (ферментативного) аспарагиновой и глутаминовой кислот осуществляется многими представителями флоры и фауны.

Производство аминокислот происходит при помощи восстановительного аминирования ряда кетокислот и альдегидокислот, возникающих путем ферментативного переаминирования, а также в результате окисления различных углеводов. Конечными продуктами усвоения аммиака (NH₃) растениями и микроорганизмами являются белки, которые входят в состав ядра клеток, протоплазмы, а также откладываются в виде так называемых запасных белков.

Человек и большинство животных могут синтезировать аминокислоты лишь в довольно ограниченной мере. Они не способны производить восемь незаменимых соединений (лизин, валин, фенилаланин, триптофан, изолейцин, лейцин, метионин, треонин), и потому для них главным источником азота являются потребляемые с пищей белки, то есть, в конечном счете, - собственные белки микроорганизмов и растений.

Азот

АЗО́Т -а; м. [франц. azote от греч. an- - не-, без- и zōtikos - дающий жизнь]. Химический элемент (N), газ без цвета и запаха, не поддерживающий дыхания и горения (составляет основную по объёму и массе часть воздуха, является одним из главных элементов питания растений).

Азо́тный, -ая, -ое. А-ая кислота. А-ые удобрения. Азо́тистый, -ая, -ое. А-ая кислота.

азо́т

(лат. Nitrogenium), химический элемент V группы периодической системы. Название от греч. а... - отрицательная приставка, и zōē - жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2-атомных молекул (N 2); газ без цвета и запаха; плотность 1,25 г/л, t пл –210ºC, t кип –195,8ºC. Химически весьма инертен, однако реагирует с комплексными соединениями переходных металлов. Основной компонент воздуха (78,09% объёма), разделением которого получают промышленный азот (более 3 / 4 идёт на синтез аммиака). Применяется как инертная среда для многих технологических процессов; жидкий азот - хладагент. Азот - один из основных биогенных элементов, входящий в состав белков и нуклеиновых кислот.

АЗОТ

АЗО́Т (лат. Nitrogenium - рождающий селитры), N (читается «эн»), химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде - газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N 2 , обладающих высокой прочностью. Относится к неметаллам.
Природный азот состоит из стабильных нуклидов (см. НУКЛИД) 14 N (содержание в смеси 99,635% по массе) и 15 N. Конфигурация внешнего электронного слоя 2s 2 3 . Радиус нейтрального атома азота 0,074 нм, радиус ионов: N 3- - 0,132 , N 3+ - 0,030 и N 5+ - 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.
История открытия
Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения («удушливый воздух») и в отличие от CO 2 не поглощаемый раствором щелочи. Вскоре французский химик А. Л. Лавуазье (см. ЛАВУАЗЬЕ Антуан Лоран) пришел к выводу, что «удушливый» газ входит в состав атмосферного воздуха, и предложил для него название «azote» (от греч. azoos - безжизненный). В 1784 английский физик и химик Г. Кавендиш (см. КАВЕНДИШ Генри) установил присутствие азота в селитре (отсюда латинское название азота, предложенное в 1790 французским химиком Ж. Шанталем).
Нахождение в природе
В природе свободный (молекулярный) азот входит в состав атмосферного воздуха (в воздухе 78,09% по объему и 75,6% по массе азота), а в связанном виде - в состав двух селитр: натриевой NaNO 3 (встречается в Чили, отсюда название чилийская селитра (см. ЧИЛИЙСКАЯ СЕЛИТРА) ) и калиевой KNO 3 (встречается в Индии, отсюда название индийская селитра) - и ряда других соединений. По распространенности в земной коре азот занимает 17-е место, на его долю приходится 0,0019% земной коры по массе. Несмотря на свое название, азот присутствует во всех живых организмах (1-3% на сухую массу), являясь важнейшим биогенным элементом (см. БИОГЕННЫЕ ЭЛЕМЕНТЫ) . Он входит в состав молекул белков, нуклеиновых кислот, коферментов, гемоглобина, хлорофилла и многих других биологически активных веществ. Некоторые, так называемые азотфиксирующие, микроорганизмы способны усваивать молекулярный азот воздуха, переводя его в соединения, доступные для использования другими организмами (см. Азотфиксация (см. АЗОТФИКСАЦИЯ) ). Превращения соединений азота в живых клетках - важнейшая часть обмена веществ у всех организмов.
Получение
В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (-195,8 °C), чем другого компонента воздуха - кислорода (-182,9 °C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись «азот». Хранят жидкий азот в сосудах Дьюара (см. ДЬЮАРА СОСУД) .
В лаборатории чистый («химический») азот получают, добавляя при нагревании насыщенный раствор хлорида аммония NH 4 Cl к твердому нитриту натрия NaNO 2:
NaNO 2 + NH 4 Cl = NaCl + N 2 + 2H 2 O.
Можно также нагревать твердый нитрит аммония:
NH 4 NO 2 = N 2 + 2H 2 O.
Физические и химические свойства
Плотность газообразного азота при 0 °C 1,25046 г/дм 3 , жидкого азота (при температуре кипения) - 0,808 кг/дм 3 . Газообразный азот при нормальном давлении при температуре –195,8 °C переходит в бесцветную жидкость, а при температуре –210,0 °C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже –237,54 °C устойчива форма с кубической решеткой, выше - с гексагональной.
Критическая температура азота –146,95 °C, критическое давление 3,9МПа, тройная точка лежит при температуре –210,0 °C и давлении 125,03 гПа, из чего следует, что азот при комнатной температуре ни при каком, даже очень высоком давлении, нельзя превратить в жидкость.
Теплота испарения жидкого азота 199,3 кДж/кг (при температуре кипения), теплота плавления азота 25,5 кДж/кг (при температуре –210 °C).
Энергия связи атомов в молекуле N 2 очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Это свидетельствует о том, что связь между атомами азота тройная. Высокая прочность молекулы N 2 может быть объяснена в рамках метода молекулярных орбиталей. Энергетическая схема заполнения молекулярных орбиталей в молекуле N 2 показывает, что электронами в ней заполнены только связывающие s- и p-орбитали. Молекула азота немагнитна (диамагнитна).
Из-за высокой прочности молекулы N 2 процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена (см. ГЕКСОГЕН) ) при нагревании, ударах и т. д. приводят к образованию молекул N 2 . Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.
Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием (см. ЛИТИЙ) с образованием твердого нитрида лития Li 3 N. В соединениях проявляет различные степени окисления (от –3 до +5). С водородом образует аммиак (см. АММИАК) NH 3 . Косвенным путем (не из простых веществ) получают гидразин (см. ГИДРАЗИН) N 2 H 4 и азотистоводородную кислоту HN 3 . Соли этой кислоты - азиды (см. АЗИДЫ) . Азид свинца Pb(N 3) 2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов.
Известно несколько оксидов азота (см. АЗОТА ОКСИДЫ) . С галогенами азот непосредственно не реагирует, косвенными путями получены NF 3 , NCl 3 , NBr 3 и NI 3 , а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF 3).
Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые - при хранении) на простые вещества. Так, NI 3 выпадает в осадок при сливании водных растворов аммиака и иодной настойки. Уже при легком сотрясении сухой NI 3 взрывается:
2NI 3 = N 2 + 3I 2 .
Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.
При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М 3 N 2 , которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:
Са 3 N 2 + 6H 2 O = 3Ca(OH) 2 + 2NH 3 .
Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe 2 N и Fe 4 N. При нагревании азота с ацетиленом C 2 H 2 может быть получен цианистый водород HCN.
Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота (см. АЗОТНАЯ КИСЛОТА) HNO 3 , ее соли нитраты (см. НИТРАТЫ) , а также азотистая кислота HNO 2 и ее соли нитриты (см. НИТРИТЫ) .
Применение
В промышленности газ азот используют главным образом для получения аммиака (см. АММИАК) . Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент (см. ХЛАДАГЕНТ) , его применяют в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения (см. МИНЕРАЛЬНЫЕ УДОБРЕНИЯ) .


Энциклопедический словарь . 2009 .

Синонимы :

Смотреть что такое "азот" в других словарях:

    - (N) химический элемент, газ, без цвета, вкуса и запаха; составляет 4/5 (79 %) воздуха; уд. вес 0,972; атомный вес 14; сгущается в жидкость при 140 °С. и давлении 200 атмосфер; составная часть многих растительных и животных веществ. Словарь… … Словарь иностранных слов русского языка

    АЗОТ - АЗОТ, хим. элемент, симв. N (франц. AZ), порядковый номер 7, ат. в. 14,008; точка кипения 195,7°; 1 л А. при 0° и 760 мм давл. весит 1,2508 г [лат. Nitrogenium («порождающий селитру»), нем. Stickstoff («удушающее… … Большая медицинская энциклопедия

    - (лат. Nitrogenium) N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067. Название от греческой a отрицательная приставка и zoe жизнь (не поддерживает дыхания и горения). Свободный азот состоит из 2 атомных… … Большой Энциклопедический словарь

    азот - а м. azote m. <араб. 1787. Лексис.1. алхим. Первая материя металлов металлическая ртуть. Сл. 18. Пустился он <парацельс> на конец по свету, предлагая всем за весьма умеренную цену свой Лауданум и свой Азот, для изцеления всех возможных… … Исторический словарь галлицизмов русского языка

    - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 шС. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Современная энциклопедия

    Азот - (Nitrogenium), N, химический элемент V группы периодической системы, атомный номер 7, атомная масса 14,0067; газ, tкип 195,80 °С. Азот основной компонент воздуха (78,09% по объему), входит в состав всех живых организмов (в организме человека… … Иллюстрированный энциклопедический словарь

    - (хим. знак N, атомный вес 14) один из химических элементов;бесцветный газ, не имеющий ни запаха, ни вкуса; очень мало растворим вводе. Удельный вес его 0.972. Пикте в Женеве и Кальете в Париже удалосьсгустить азот, подвергая его высокому давлениюЭнциклопедия Брокгауза и Ефрона

    N (лат. Nitrogenium * a. nitrogen; н. Stickstoff; ф. azote, nitrogene; и. nitrogeno), хим. элемент V группы периодич. системы Mенделеева, ат.н. 7, ат. м. 14,0067. Oткрыт в 1772 англ. исследователем Д. Pезерфордом. При обычных условиях A.… … Геологическая энциклопедия

    Муж., хим. основание, главная стихия селитры; селитротвор, селитрород, селитряк; он же главная, по количеству, составная часть нашего воздуха (азота 79 объемов, кислорода 21). Азотистый, азотный, азотовый, азот в себе содержащий. Химики различают … Толковый словарь Даля

    Органоген, нитроген Словарь русских синонимов. азот сущ., кол во синонимов: 8 газ (55) неметалл … Словарь синонимов

    Азот - это газ, который гасит пламя, так как не горит и не поддерживает горения. Его получают фракционной перегонкой жидкого воздуха, хранят под давлением в стальных баллонах. Азот применяют, в основном, для производства аммиака и цианамида кальция, а… … Официальная терминология

Книги

  • Тесты по химии. Азот и фосфор. Углерод и кремний. Металлы. 9 класс (К учебнику Г. Е. Рудзитиса, Ф. Г. Фельдмана "Химия. 9 класс" . , Боровских Т.. Данное пособие полностью соответствует федеральному государственному образовательному стандарту (второго поколения). Пособие включает тесты, охватывающие темы учебника Г. Е. Рудзитиса, Ф. Г.…

Азот – это химический элемент с атомным номером 7. Является газом без запаха, вкуса и цвета.

Таким образом, человек не ощущает присутствия азота в земной атмосфере, между тем как она состоит из этого вещества на 78 процентов. Азот относится к самым распространенным веществам на нашей планете. Часто можно слышать, что без азота не было бы , и это правда. Ведь белковые соединения, из которых состоит все живое, обязательно содержат в себе азот.

Азот в природе

Азот находится в атмосфере в виде молекул, состоящих из двух атомов. Помимо атмосферы, азот есть в мантии Земли и в гумусном слое почвы. Основной источник азота для промышленного производства – это полезные ископаемые.

Однако в последние десятилетия, когда запасы минералов стали истощаться, возникла острая необходимость выделения азота из воздуха в промышленных масштабах. В настоящее время эта проблема решена, и огромные объемы азота для нужд промышленности добываются из атмосферы.

Роль азота в биологии, круговорот азота

На Земле азот претерпевает ряд трансформаций, в которых участвуют и биотические (связанные с жизнью) и абиотические факторы. Из атмосферы и почвы азот поступает в растения, причем не напрямую, а через микроорганизмы. Азотфиксирующие бактерии удерживают и перерабатывают азот, превращая его в форму, легко усваиваемую растениями. В организме растений азот переходит в состав сложных соединений, в частности – белков.

По пищевой цепи эти вещества попадают в организмы травоядных, а затем – хищников. После гибели всего живого азот вновь попадает в почву, где подвергается разложению (аммонификации и денитрификации). Азот фиксируется в грунте, минералах, воде, попадает в атмосферу, и круг повторяется.

Применение азота

После открытия азота (это произошло в 18-м столетии), были хорошо изучены свойства самого вещества, его соединений, возможности использования в хозяйстве. Поскольку запасы азота на нашей планете огромны, данный элемент стал использоваться крайне активно.


Чистый азот применяется в жидком или газообразном виде. Жидкий азот имеет температуру минус 196 градусов по Цельсию и применяется в следующих областях:

в медицине. Жидкий азот является хладагентом при процедурах криотерапии, то есть лечения холодом. Мгновенная заморозка применяется для удаления различных новообразований. В жидком азоте хранят образцы тканей и живые клетки (в частности – сперматозоиды и яйцеклетки). Низкая температура позволяет сохранить биоматериал в течение длительного времени, а затем разморозить и использовать.

Возможность хранить в жидком азоте целые живые организмы, а при необходимости размораживать их без всякого вреда высказана писателями-фантастами. Однако в реальности освоить эту технологию пока не удалось;

в пищевой промышленности жидкий азот используется при розливе жидкостей для создания инертной среды в таре.

Вообще азот применяется в тех областях, где необходима газообразная среда без кислорода, например,

в пожаротушении . Азот вытесняет кислород, без которого процессы горения не поддерживаются и огонь затухает.

Газообразный азот нашел применение в таких отраслях:

производство продуктов питания . Азот используется как инертная газовая среда для сохранения свежести продуктов в упаковке;

в нефтедобывающей промышленности и горном деле . Азотом продувают трубопроводы и резервуары, его нагнетают в шахты для формирования взрывобезопасной газовой среды;

в самолетостроении азотом накачивают шины шасси.

Все вышесказанное относится к применению чистого азота, но не стоит забывать, что этот элемент является исходным сырьем для производства массы всевозможных соединений:

— аммиак. Чрезвычайно востребованное вещество с содержанием азота. Аммиак идет на производство удобрений, полимеров, соды, азотной кислоты. Сам по себе применяется в медицине, изготовлении холодильной техники;

— азотные удобрения;

— взрывчатые вещества;

— красители и т.д.


Азот – не только один из наиболее распространенных химических элементов, но и очень нужный компонент, применяемый во многих отраслях человеческой деятельности.