Анатомическое и физиологическое мертвое пространство. Анатомическое и функциональное мертвое пространство

Анатомическое и физиологическое мертвое пространство. Анатомическое и функциональное мертвое пространство

Изучение мертвого пространства в дыхательном тракте человека связано со многими неясностями и противоречиями. Некоторые его аспекты не решены еще до настоящего времени.

Определение Vd возможно при помощи нескольких методов, но оно редко осуществимо в условиях подводного погружения. Наиболее широко используют метод как можно более точного вычисления Vd. В водолазной практике рассматривают два вида мертвого пространства: собственно индивидуальное мертвое пространство водолаза и мертвое пространство его дыхательного аппарата.

В настоящее время существует единое мнение в отношении вопроса об объемах дыхательного мертвого пространства у здоровых людей, находящихся в состоянии покоя. Величина их объемов зависит от размера тела водолаза. Radford в 1955 г. заметил, что у взрослых людей объем мертвого пространства (в миллилитрах), как правило, приблизительно равен массе тела человека, выраженной в фунтах. Множество разногласий среди ученых вызывает изменение мертвого пространства во время физической нагрузки, и они до сих пор еще полностью не решены.

Эти разногласия частично обусловлены тем, что некоторые авторы используют значение Ретсо2 (Рсо2 в конце дыхательного объема) вместо величины Расо2 в уравнении, предложенном Bohr. В действительности во время физической нагрузки РАСО2 может отличаться от Ретсо2. Возможно, что наиболее приемлемой является информация, полученная при обследовании здоровых молодых мужчин, проведенном в 1956 г. Asmussen, Nielsen. Эти авторы установили, что средние величины общего или физиологического мертвого пространства составляли от 170 мл (в состоянии покоя) до 350 мл во время тяжелой физической нагрузки.

Самая высокая из зарегистрированных величин составляла 450 мл. Увеличение объема мертвого пространства носило характер линейной зависимости от дыхательного объема, изменяющегося в пределах приблизительно 0,5-3,3 л на один акт дыхания.

Аналогичных измерений в водолазной практике еще не проводилось, поэтому приходится считать указанные величины приемлемыми для практики. Логично допустить, что величина индивидуального мертвого пространства у работающего водолаза составляет 0,3 л при BTPS.

Неожиданно большое значение VD недавно получено при расчете по уравнению, предложенному Bohr, у водолазов, находящихся в сухой камере под абсолютным давлением 46,7 кгс/см2. Позже такое же значение получили Salzano и соавт. (1981) в исследованиях, проводимых по программе «Atlantis» у водолазов, находящихся в сухой камере под более высоким давлением. Авторы полагают, что полученные результаты могли быть обусловлены крайне высокой плотностью дыхательных газовых смесей.

Применение дыхательного аппарата обусловливает значительное дополнение объема мертвого пространства водолаза. Любую часть аппарата, имеющую двусторонне направленную вентиляцию, следует считать «мертвой» до тех пор, пока не будет доказано противоположное. Вопрос ставится однозначно: будет ли во время выдоха эта часть аппарата содержать выдыхаемую двуокись углерода, которая затем возвращается в дыхательные пути водолаза при вдохе? Мертвое пространство почти неизбежно присутствует в конструкциях обычных соединенных с загубником легочных автоматов.

В таких случаях объем мертвого пространства , как правило, достигает 0,1 л и попытки его уменьшения значительно повышают риск чрезмерного сужения воздухоносных путей аппарата.

Величина явного объема мертвого пространства аппарата может быть определена либо с помощью заполнения его водой, либо расчетным путем. Иногда при осмотре нельзя с уверенностью определить является ли конкретный объем «функционально мертвым» или нет, или только отчасти таковым. В этих ситуациях следует использовать метод, при помощи которого определяют дыхательное мертвое пространство у человека. Водолазная маска, закрывающая все лицо, осложняет определение мертвого пространства. В случаях, когда объем мертвого пространства в отдельных образцах дыхательных аппаратов достигает 0,5 л, оно чаще представляет собой сплошной внутренний объем газа между маской и лицом, чем при использовании дыхательных аппаратов с надежным разделением между ротоносовой и глазной областями лица.
В этих случаях вдыхаемый и выдыхаемый газы могут не смешиваться в целом по всему объему, и мертвое пространство будет относительно небольшим.

Основное затруднение , связанное с наличием очень большого мертвого пространства, обусловленного дыхательным аппаратом, состоит не столько в повышении требования к вентиляции, сколько в невозможности для водолаза полностью компенсировать нужную вентиляцию легких, что приводит к росту РАсо2. В одном из исследований было установлено, что прибавление к объему подводной дыхательной системы 0,5 л мертвого пространства увеличивает среднее Расо2 (измеренное к концу дыхательного объема) на 6 мм рт. ст. Это существенное увеличение, особенно при уже высоком Расо2 .

Анатомическим мертвым пространством называют объем проводящих воздухоносных путей. В норме он составляет около 150 мл, возрастая при глубоком вдохе, так как бронхи растягиваются окружающей их паренхимой легких. Объем мертвого пространства зависит также от размеров.тела и позы. Существует приближенное правило, согласно которому у сидящего человека он примерно равен в миллилитрах массе тела в фунтах (1 фунт — 453,6 г).

А. После вдоха из емкости с чистым кислородом обследуемый делает выдох, и концентрация N 2 в выдыхаемом воздухе вначале повышается, а потом остается почти постоянной (кривая при этом практически выходит на плато, соответствующее чистому альвеолярному воздуху). Б. Зависимость концентрации от выдыхаемого объема. Объем мертвого пространства определяется точкой пересечения оси абсцисс с вертикальной пунктирной линией, проведенной таким образом, что площади Л и Б равны.

Объем анатомического мертвого пространства можно измерить по методу Фаулера. При этом обследуемый дышит через систему клапанов и непрерывно измеряется содержание азота с помощью быстродействующего анализатора, забирающего воздух из трубки, начинающейся у рта. Когда после вдыхания 100 % O 2 человек делает выдох, содержание N 2 постепенно увеличивается по мере замены воздуха мертвого пространства альвеолярным.

В конце выдоха регистрируется практически постоянная концентрация азота, что соответствует чистому альвеолярному воздуху. Этот участок кривой часто называют альвеолярным «плато», хотя даже у здоровых людей он не совсем горизонтальный, а у больных с поражениями легких может круто идти вверх. При данном методе записывается также объем выдыхаемого воздуха.

Для определения объема мертвого пространства строят график, связывающий содержание N 2 с выдыхаемым объемом. Затем на этом графике проводят вертикальную линию таким образом, чтобы площадь А была равна площади Б. Объем мертвого пространства соответствует точке пересечения этой линии с осью абсцисс. Фактически этот метод дает объем проводящих воздухоносных путей до «средней точки» перехода от мертвого пространства к альвеолярному воздуху.

«Физиология дыхания», Дж. Уэст

В этой и следующих двух главах рассмотрено, каким образом вдыхаемый воздух поступает в альвеолы, как газы переходят через альвеолярно-капиллярный барьер и как они удаляются из легких с током крови. Эти три процесса обеспечиваются соответственно вентиляцией, диффузией и кровотоком. Приведены типичные значения объемов и расходов воздуха и крови. На практике эти величины существенно варьируют (по J….

Перед тем как перейти к динамическим показателям вентиляции, полезно коротко рассмотреть «статические» легочные объемы. Некоторые из них можно измерить с помощью спирометра. Во время выдоха колокол спирометра поднимается, а перо самописца опускается. Амплитуда колебаний, записываемых при спокойном дыхании, соответствует дыхательному объему. Если же обследуемый делает максимально глубокий вдох, а затем — как можно более глубокий…

Функциональную остаточную емкость (ФОЕ) можно измерить также с помощью общего плетизмографа. Он представляет собой крупную герметичную камеру, напоминающую кабинку телефона-автомата, с обследуемым внутри. В конце нормального выдоха с помоагью заглушки перекрывается мундштук, через который дышит обследуемый, и его просят сделать несколько дыхательных движений. При попытке вдоха газовая смесь в его легких расширяется, объем их увеличивается,…

Коэффициент вентиляции альвеол

Легочная вентиляция

Статические легочные объемы, л.

Функциональная характеристика легких и легочная вентиляция

Альвеолярная среда. Постоянство альвеолярной среды, физиологическая значимость

Легочные объемы

Легочные объемы подразделяются на статические и динамические.

Статические легочные объемы измеряют при завершенных дыхательных движениях, без лимитирования их скорости.

Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Объем воздуха в легких и дыхательных путях зависит от следующих показателей:

1. Антропометрических индивидуальных характеристик человека и дыхательной системы.

2. Свойств легочной ткани.

3. Поверхностного натяжения альвеол.

4. Силы, развиваемой дыхательными мышцами.

1Общая емкость- 6

2Жизненная емкость – 4,5

3Функциональная остаточная емкость -2,4

4Остаточный объем – 1,2

5Дыхательный объем- 0,5

6Объем мертвого пространства – 0,15

Легочной вентиляцией называют объем воздуха, вдыхаемого за единицу времени (минутный объем дыхания)

МОД - то количество воздуха, которое вдыхается в минуту

МОД = ДО х ЧД

До-дыхательный объем,

Чд-частота дыхания

Параметры вентиляции

Частота дыхания- 14 мин.

Минутный объем дыхания- 7л/мин

Альвеолярная вентиляция – 5л/мин

Вентиляция мертвого пространства – 2л/мин

В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ – функциональная остаточная емкость), во время вдоха в альвеолы поступает 350 мл воздуха, следовательно, обновляется лишь 1/7 часть альвеолярного воздуха (2500/350 = 7.1).

Для нормального процесса обмена газов в легочных альвеолах необходимо, чтобы их вентиляция воздухом находилась в определенном соотношении с перфузией их капилляров кровью т.е. минутному объему дыхания должен соответствовать соответствующий минутный объем крови, протекающий через сосуды малого круга, а этот объем, естественно, равен объему крови, протекающей через большой круг кровообращения.

В обычных условиях вентиляционно-перфузионный коэффициент у человека составляет 0,8-0,9.

Например, при альвеолярной вентиляции, равной 6 л/мин, минутный объем крови может составить около 7 л/мин.

В отдельных областях легких соотношение между вентиляцией и перфузией может быть неравномерным.

Резкие изменения этих отношений могут вести к недостаточной артериализации крови, проходящей через капилляры альвеол.

Анатомически мертвым пространством называют воздухопроводящую зону легкого, которая не участвует в газообмене (верхние дыхательные пути, трахея, бронхи, терминальные бронхиолы). АМП выполняет ряд важных функций: нагревает вдыхаемый атмосферные воздух, задерживает примерно 30% выдыхаемого тепла и воды.


Анатомически мертвое пространство соответствует воздухопроводящей зоне легких, объем которой варьирует от 100 до 200 мл., а в среднем составляет 2 мл на 1 кг. массы тела.

В здоровом легком некоторое количество апикальных альвеол вентилируются нормально, но частично либо полностью не перфузируются кровью.

Подобное физиологическое состояние обозначается как «альвеолярное мертвое пространство».

В физиологических условиях АМП может появляться в случае снижения минутного объема крови, уменьшения давления в артериальных сосудах легких, при патологических состояниях. В подобных зонах легких не происходит газообмена.

Сумма объемов анатомического и альвеолярного мертвого пространства называется физиологическим, или функциональным мертвым пространством.


Анатомическое мертвое пространство - это часть дыхательной системы, в которой нет значительного газообмена. Анатомическое мертвое пространство составляют воздухопроводящие пути, а именно носоглотка, трахея, бронхи и бронхиолы вплоть до их перехода в альвеолы. Заполняющий их объем воздуха называется объемом мертвого пространства ^Б). Объем мертвого пространства является величиной переменной и у взрослых составляет около 150200 мл (2 мл/кг массы тела). В этом пространстве не происходит га- зообмен, а указанные структуры выполняют вспомогательную роль по согреванию, увлажнению и очистке вдыхаемого воздуха.
Функгциональное мертвое пространство. Под функциональным (физиологическим) мертвым пространством понимают те участки легких, в которых не происходит газообмен. В отличие от анатомического, к функциональному мертвому пространству относятся также альвеолы, которые вентилируются, но не перфузируются кровью. Суммарно это называется альвеолярным мертвым пространством. В здоровых легких количество таких альвеол невелико, поэтому объемы мертвого анатомического и физиологического пространства отличаются мало. Однако при некоторых нарушениях функции легких, когда легкие вентилируются и перфузируются кровью неравномерно, объем функционального мертвого пространства может оказаться значительно больше анатомического. Таким образом, функциональное мертвое пространство представляет сумму анатомического и альвеолярного мертвого пространства: Тфунк. = Танат. + Тальвеол. Вентиляция увеличение без = функционального перфузии мертвого пространства
Соотношение объема мертвого пространства (VD). к дыхательному объему ^Т) - это коэффициент мертвого пространства (VD/VТ). В норме вентиляция мертвого пространства составляет 30% от дыхательного объема и альвеолярная вентиляция - около 70%. Таким образом, коэффициент мертвого пространства VD/VТ = = 0,3. При повышении коэффициента мертвого пространства до 0,70,8 длительное спонтанное дыхание невозможно, поскольку увеличивается дыхательная работа и СOJ накапливается в большем количестве, чем может быть удалено. Регистрируемое увеличение коэффициента мертвого пространства свидетельствует о том, что в отдельных участках легкого перфузия практически прекратилась, но этот участок по-прежнему вентилируется.
Вентиляция мертвого пространства оценивается за минуту и зависит от величины мертвого пространства (УЭ) и частоты дыхания, возрастая с ней линейно. Возрастание вентиляции мертвого пространства может компенсироваться увеличением дыхательного объема. Важным является результирующий объем альвеолярной вентиляции ^А), который фактически поступает в альвеолы за минуту и вовлекается в газообмен. Он может быть рассчитан следующим образом: VA = (VI - VD)F, где VA - объем альвеолярной вентиляции; VI - дыхательный объем; VD - объем мертвого пространства; F - частота дыхания.
Функциональное мертвое пространство может быть рассчитано по следующей формуле:
VDфунк. = VT(1 - РМТ С02/раС02), где VI - дыхательный объем; РМТ С02 - содержание С02 в выдыхаемом воздухе; раС02 - парциальное давление С02 в артериальной крови.
Для приблизительной оценки значения РМТ С02 может быть использовано парциальное давление С02 в выдыхаемой смеси вместо содержания С02 в выдыхаемом воздухе.
Тфунк. = VT(1 - рЕС02/раС02), где рЕС02 - парциальное давление С02 в конце выдоха.
Пример. Если у пациента с весом 75 кг частота дыхания 12 в минуту, дыхательный объем - 500 мл, то МОД составляет 6 л, из которых вентиляция мертвого пространства - 12 150 мл (2 мл/кг), т.е. 1800 мл. Коэффициент мертвого пространства составляет 0,3. Если у такого пациента частота дыхания будет 20 в минуту, а после-операционный ДО (VI) 300 мл, то минутный объем дыхания будет равен 6 л, при этом вентиляция мертвого пространства возрастет до 3 л (20 150 мл). Коэффициент мертвого пространства составит 0,5. При увеличении частоты дыхания и уменьшении ДО вентиляция мертвого пространства возрастает за счет уменьшения альвеолярной вентиляции. Если дыхательный объем не изменяется, то возрастание частоты дыхания приводит к увеличению дыхательной работы. После операции, особенно после лапаротомии или торакотомии, коэффициент мертвого пространства приблизительно составляет 0,5 и может возрастать до 0,55 в первые 24 часа.

Еще по теме Мертвое пространство вентиляции:

  1. Особенности вентиляции у новорожденных и детей раннего возраста Показания к вентиляционной поддержке и основные принципы механической вентиляции у новорожденных и детей

Весь сложный процесс можно подразделить на три основных этапа: внешнее дыхание; и внутреннее (тканевое) дыхание.

Внешнее дыхание — газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание включает обмен газов между атмосферным и альвеолярным воздухом, а также легочных капилляров и альвеолярным воздухом.

Это дыхание осуществляется в результате периодических изменений объема грудной полости. Увеличение ее объема обеспечивает вдох (инспирацию), уменьшение — выдох (экспирацию). Фазы вдоха и следующего за ним выдоха составляют . Во время вдоха атмосферный воздух через воздухоносные пути поступает в легкие, при выдохе часть воздуха покидает их.

Условия, необходимые для внешнего дыхания:

  • герметичность грудной клетки;
  • свободное сообщение легких с окружающей внешней средой;
  • эластичность легочной ткани.

Взрослый человек делает 15-20 дыханий в минуту. Дыхание физически тренированных людей более редкое (до 8-12 дыханий в минуту) и глубокое.

Наиболее распространенные методы исследования внешнего дыхания

Методы оценки дыхательной функции легких:

  • Пневмография
  • Спирометрия
  • Спирография
  • Пневмотахометрия
  • Рентгенография
  • Рентгеновская компьютерная томография
  • Ультразвуковое исследование
  • Магнитно-резонансная томография
  • Бронхография
  • Бронхоскопия
  • Радионуклидные методы
  • Метод разведения газов

Спирометрия — метод измерения объемов выдыхаемого воздуха с помощью прибора спирометра. Используются спирометры разного типа с турбиметрическим датчиком, а также водные, в которых выдыхаемый воздух собирается под колокол спирометра, помещенный в воду. По подъему колокола определяется объем выдыхаемого воздуха. В последнее время широко применяются датчики, чувствительные к изменению объемной скорости воздушного потока, подсоединенные к компьютерной системе. В частности, на этом принципе работает компьютерная система типа «Спирометр МАС-1» белорусского производства и др. Такие системы позволяют проводить не только спирометрию, но и спирографию, а также пневмотахографию).

Спирография - метод непрерывной регистрации объемов вдыхаемого и выдыхаемого воздуха. Получаемую при этом графическую кривую называют спирофаммой. По спирограмме можно определить жизненную емкость легких и дыхательные объемы, частоту дыхания и произвольную максимальную вентиляцию легких.

Пневмотахография - метод непрерывной регистрации объемной скорости потоков вдыхаемого и выдыхаемого воздуха.

Имеется много других методов исследования респираторной системы. Среди них плетизмография грудной клетки, прослушивание звуков, возникающих при прохождении воздуха через дыхательные пути и легкие, рентгеноскопия и рентгенография, определение содержания кислорода и углекислого газа в потоке выдыхаемого воздуха и др. Некоторые из этих методов рассматриваются ниже.

Объемные показатели внешнего дыхания

Соотношение величин легочных объемов и емкостей представлено на рис. 1.

При исследовании внешнего дыхания используются следующие показатели и их аббревиатура.

Общая емкость легких (ОЕЛ) — объем воздуха, находящийся в легких после максимально глубокого вдоха (4-9 л).

Рис. 1. Средние величины объемов и емкостей легких

Жизненная емкость легких

Жизненная емкость легких (ЖЕЛ) — объем воздуха, который может выдохнуть человек при максимально глубоком медленном выдохе, сделанном после максимального вдоха.

Величина жизненной емкости легких человека составляет 3-6 л. В последнее время в связи с внедрением пневмотахографической техники все чаще определяют так называемую форсированную жизненную емкость легких (ФЖЕЛ). При определении ФЖЕЛ испытуемый должен после максимально глубокого вдоха сделать максимально глубокий форсированный выдох. При этом выдох должен производиться с усилием, направленным на достижение максимальной объемной скорости выдыхаемого воздушного потока на протяжении всего выдоха. Компьютерный анализ такого форсированного выдоха позволяет рассчитать десятки показателей внешнего дыхания.

Индивидуальную нормальную величину ЖЕЛ называют должной жизненной емкостью легких (ДЖЕЛ). Ее рассчитывают в литрах по формулам и таблицам на основе учета роста, массы тела, возраста и пола. Для женщин 18-25-летнего возраста расчет можно вести по формуле

ДЖЕЛ = 3,8*Р + 0,029*В — 3,190; для мужчин того же возраста

Остаточный объем

ДЖЕЛ = 5,8*Р + 0,085*В — 6,908, где Р — рост; В — возраст (годы).

Величина измеренной ЖЕЛ считается пониженной, если это снижение составляет более 20% от уровня ДЖЕЛ.

Если для показателя внешнего дыхания применяют название «емкость», то это значит, что в состав такой емкости входят более мелкие подразделения, называемые объемами. Например, ОЕЛ состоит из четырех объемов, ЖЕЛ — из трех объемов.

Дыхательный объем (ДО) — это объем воздуха, поступающий в легкие и удаляемый из них за один дыхательный цикл. Этот показатель называют также глубиной дыхания. В состоянии покоя у взрослого человека ДО составляет 300-800 мл (15-20% от величины ЖЕЛ); месячного ребенка — 30 мл; годовалого — 70 мл; десятилетнего — 230 мл. Если глубина дыхания больше нормы, то такое дыхание называют гиперпноэ — избыточное, глубокое дыхание, если же ДО меньше нормы, то дыхание назвают олигопноэ — недостаточное, поверхностное дыхание. При нормальной глубине и частоте дыхания его называют эупноэ — нормальное, достаточное дыхание. Нормальная частота дыхания в покое у взрослых составляет 8-20 дыхательных циклов в минуту; месячного ребенка — около 50; годовалого — 35; десятилетнего — 20 циклов в минуту.

Резервный объем вдоха (РО вд) — объем воздуха, который человек может вдохнуть при максимально глубоком вдохе, сделанном после спокойного вдоха. Величина РО вд в норме составляет 50-60% от величины ЖЕЛ (2-3 л).

Резервный объем выдоха (РО выд) — объем воздуха, который человек может выдохнуть при максимально глубоком выдохе, сделанном после спокойного выдоха. В норме величина РО выд составляет 20-35% от ЖЕЛ (1-1,5 л).

Остаточный объем легких (ООЛ) — воздух, остающийся в дыхательных путях и легких после максимального глубокого выдоха. Его величина составляет 1-1,5 л (20-30% от ОЕЛ). В пожилом возрасте величина ООЛ нарастает из-за уменьшения эластической тяги легких, проходимости бронхов, снижения силы дыхательных мышц и подвижности грудной клетки. В возрасте 60 лет он уже составляет около 45% от ОЕЛ.

Функциональная остаточная емкость (ФОЕ) — воздух, остающийся в легких после спокойного выдоха. Эта емкость состоит из остаточного объема легких (ООЛ) и резервного объема выдоха (РО выд).

Не весь атмосферный воздух, поступающий в дыхательную систему при вдохе, принимает участие в газообмене, а лишь тот, который доходит до альвеол, имеющих достаточный уровень кровотока в окружающих их капиллярах. В связи с этим выделяют гак называемое мертвое пространство.

Анатомическое мертвое пространство (АМП) — это объем воздуха, находящийся в дыхательных путях до уровня респираторных бронхиол (на этих бронхиолах уже имеются альвеолы и возможен газообмен). Величина АМП составляет 140-260 мл и зависит от особенностей конституции человека (при решении задач, в которых необходимо учитывать АМП, а величина его не указана, объем АМП принимают равным 150 мл).

Физиологическое мертвое пространство (ФМП) — объем воздуха, поступающий в дыхательные пути и легкие и не принимающий участия в газообмене. ФМП больше анатомического мертвого пространства, так как включает его как составную часть. Кроме воздуха, находящегося в дыхательных путях, в состав ФМП входит воздух, поступающий в легочные альвеолы, но не обменивающийся газами с кровью из-за отсутствия или снижения кровотока в этих альвеолах (для этого воздуха иногда применяется название альвеолярное мертвое пространство). В норме величина функционального мертвого пространства составляет 20-35% от величины дыхательного объема. Возрастание этой величины свыше 35% может свидетельствовать о наличии некоторых заболеваний.

Таблица 1. Показатели легочной вентиляции

В медицинской практике важно учитывать фактор мертвого пространства при конструировании приборов для дыхания (высотные полеты, подводное плавание, противогазы), проведении ряда диагностических и реанимационных мероприятий. При дыхании через трубки, маски, шланги к дыхательной системе человека подсоединяется дополнительное мертвое пространство и, несмотря на возрастание глубины дыхания, вентиляция альвеол атмосферным воздухом может стать недостаточной.

Минутный объем дыхания

Минутный объем дыхания (МОД) — объем воздуха вентилируемый через легкие и дыхательные пути за 1 мин. Для определения МОД достаточно знать глубину, или дыхательный объем (ДО), и частоту дыхания (ЧД):

МОД = ДО * ЧД.

В покос МОД составляет 4-6 л/мин. Этот показатель часто называют также вентиляцией легких (отличать от альвеолярной вентиляции).

Альвеолярная вентиляция

Альвеолярная вентиляция легких (АВЛ) — объем атмосферного воздуха, проходящий через легочные альвеолы за 1 мин. Для расчета альвеолярной вентиляции надо знать величину АМП. Если она не определена экспериментально, то для расчета объем АМП берут равным 150 мл. Для расчета альвеолярной вентиляции можно пользоваться формулой

АВЛ = (ДО — АМП) . ЧД.

Например, если глубина дыхания у человека 650 мл, а частота дыхания 12, то АВЛ равно 6000 мл (650-150) . 12.

АВ = (ДО — ОМП) * ЧД = ДО альв * ЧД

  • АВ — альвеолярная вентиляция;
  • ДО альв — дыхательный объем альвеолярной вентиляции;
  • ЧД — частота дыхания

Максимальная вентиляция легких (МВЛ) — максимальный объем воздуха, который может быть провентилирован через легкие человека за 1 мин. МВЛ может быть определена при произвольной гипервентиляции в покое (дышать максимально глубоко и часто в покос допустимо не более 15 с). С помощью специальной техники МВЛ может быть определена во время выполнения человеком интенсивной физической работы. В зависимости от конституции и возраста человека норма МВЛ находится в границах 40-170 л/мин. У спортсменов МВЛ может достигать 200 л/мин.

Потоковые показатели внешнего дыхания

Кроме легочных объемов и емкостей для оценки состояния дыхательной системы используют так называемые потоковые показатели внешнего дыхания. Простейшим методом определения одного из них — пиковой объемной скорости выдоха — является пикфлоуметрия. Пикфлоуметры — простые и вполне доступные приборы для пользования в домашних условиях.

Пиковая объемная скорость выдоха (ПОС) — максимальная объемная скорость потока выдыхаемого воздуха, достигнутая в процессе форсированного выдоха.

С помощью прибора пневмотахометра можно определить не только пиковую объемную скорость выдоха, но и вдоха.

В условиях медицинского стационара все большее распространение получают приборы пневмотахографы с компьютерной обработкой получаемой информации. Приборы подобного типа позволяют на основе непрерывной регистрации объемной скорости воздушного потока, создаваемого в ходе выдоха форсированной жизненной емкости легких, рассчитать десятки показателей внешнего дыхания. Чаще всего определяются ПОС и максимальные (мгновенные) объемные скорости воздушного потока в момент выдоха 25, 50, 75% ФЖЕЛ. Их называют соответственно показателями МОС 25 , МОС 50 , МОС 75 . Популярно также определение ФЖЕЛ 1 — объема форсированного выдоха за время, равное 1 e. На основе этого показателя рассчитывается индекс (показатель) Тиффно — выраженное в процентах отношение ФЖЕЛ 1 к ФЖЕЛ. Регистрируется также кривая, отражающая изменение объемной скорости воздушного потока в процессе форсированного выдоха (рис. 2.4). При этом на вертикальной оси отображается объемная скорость (л/с), на горизонтальной — процент выдохнутой ФЖЕЛ.

На приведенном графике (рис. 2, верхняя кривая) вершина указывает величину ПОС, проекция момента выдоха 25% ФЖЕЛ на кривую характеризует МОС 25 , проекция 50% и 75% ФЖЕЛ соответствует величинам МОС 50 и МОС 75 . Диагностическую значимость имеют не только скорости потока в отдельных точках, но и весь ход кривой. Ее часть, соответствующая 0-25% выдыхаемой ФЖЕЛ, отражает проходимость для воздуха крупных бронхов, трахеи и , участок от 50 до 85% ФЖЕЛ — проходимость мелких бронхов и бронхиол. Прогиб на нисходящем участке нижней кривой в области выдоха 75-85% ФЖЕЛ указывает на снижение проходимости мелких бронхов и бронхиол.

Рис. 2. Потоковые показатели дыхания. Кривые ноток — объем здорового человека (верхняя), больного с обструктивнымн нарушениями проходимости мелких бронхов (нижняя)

Определение перечисленных объемных и потоковых показателей применяются в диагностике состояния системы внешнего дыхания. Для характеристики функции внешнего дыхания в клинике используются четыре варианта заключений: норма, обструктивные нарушения, рестриктивные нарушения, смешанные нарушения (сочетание обструктивных и рестриктивных нарушений).

Для большинства потоковых и объемных показателей внешнего дыхания выходящими за пределы нормы считаются отклонения их величины от должного (расчетного) значения более чем на 20%.

Обструктивные нарушения — это нарушения проходимости дыхательных путей, ведущие к увеличению их аэродинамического сопротивления. Такие нарушения могут развиваться в результате повышения тонуса гладких мышц нижних дыхательных путей, при гипертрофии или отеке слизистых оболочек (например, при острых респираторных вирусных инфекциях), скоплении слизи, гнойного отделяемого, при наличии опухоли или инородного тела, нарушении регуляции проходимости верхних дыхательных путей и других случаях.

О наличии обструктивных изменений дыхательных путей судят по снижению ПОС, ФЖЕЛ 1 , МОС 25 , МОС 50 , МОС 75 , МОС 25-75 , МОС 75-85 , величины индекса теста Тиффно и МВЛ. Показатель теста Тиффно в норме составляет 70-85%, снижение его до 60% расценивается как признак умеренного нарушения, а до 40% — резко выраженного нарушения проходимости бронхов. Кроме того, при обструктивных нарушениях увеличиваются такие показатели, как остаточный объем, функциональная остаточная емкость и общая емкость легких.

Рестриктивные нарушения — это уменьшение расправления легких при вдохе, снижение дыхательных экскурсий легких. Эти нарушения могут развиться из-за снижения растяжимости легких, при повреждениях грудной клетки, наличии спаек, скопления в плевральной полости жидкости, гнойного содержимого, крови, слабости дыхательных мышц, нарушении передачи возбуждения в нервно-мышечных синапсах и других причин.

Наличие рестриктивных изменений легких определяют по снижению ЖЕЛ (не менее 20% от должной величины) и уменьшению МВЛ (неспецифический показатель), а также снижению растяжимости легких и в ряде случаев по возрастанию показателя теста Тиффно (более 85%). При рестриктивных нарушениях уменьшаются общая емкость легких, функциональная остаточная емкость и остаточный объем.

Заключение о смешанных (обструктивных и рестриктивных) нарушениях системы внешнего дыхания делается при одновременном наличии изменений вышеперечисленных потоковых и объемных показателей.

Легочные объемы и емкости

Дыхательный объем - это объем воздуха, который вдыхает и выдыхает человек в спокойном состоянии; у взрослого человека он равен 500 мл.

Резервный объем вдоха — это максимальный объем воздуха, который может вдохнуть человек после спокойного вдоха; величина его равна 1,5-1,8 л.

Резервный объем выдоха - это максимальный объем воздуха, который может выдохнуть человек после спокойного выдоха; этот объем составляет 1-1,5 л.

Остаточный объем - это объем воздуха, который остается в легких после максимального выдоха; величина остаточного объема 1 -1,5 л.

Рис. 3. Изменение дыхательного объема, плеврального и альвеолярного давления при вентиляции легкого

Жизненная емкость легких (ЖЕЛ) — это максимальный объем воздуха, который может выдохнуть человек после самого глубокого вдоха. ЖЕЛ включает в себя резервный объем вдоха, дыхательный объем и резервный объем выдоха. Жизненная емкость легких определяется спирометром, а метод ее определения называют спирометрией. ЖЕЛ у мужчин 4-5,5 л, а у женщин — 3-4,5 л. Она больше в положении стоя, чем в положении сидя или лежа. Физическая тренировка приводит к увеличению ЖЕЛ (рис. 4).

Рис. 4. Спирограмма легочных объемов и емкостей

Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема и равна 2,5 л.

Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ включает в себя остаточный объем и жизненную емкость легких.

Мертвое пространство образует воздух, который находится в воздухоносных путях и не участвует в газообмене. При вдохе последние порции атмосферного воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе. Объем мертвого пространства около 150 мл, или примерно 1/3, дыхательного объема при спокойном дыхании. Значит, из 500 мл вдыхаемого воздуха в альвеолы поступает лишь 350 мл. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), поэтому при каждом спокойном вдохе обновляется лишь 1/7 часть альвеолярного воздуха.